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Abstract - A zero-finding technique for solving nonlinear equations more
efficiently than they usually are with traditional iterative methods in which
the order of convergence is improved is presented. The key idea in deriv-
ing this procedure is to compose a given iterative method with a modified
Newton’s method that introduces just one evaluation of the function. To
carry out this procedure some classical methods with different orders of
convergence are used to obtain root-finders with higher efficiency index.
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1. Introduction

No doubt that Newton’s method is one of the best root-finding methods for
solving nonlinear equations. Recent results improving the classical formula
at the expense of an additional evaluation of the function, an additional
evaluation of the first derivative or a change in the point of evaluation can
be found in the literature on the subject (see [2, 9, 10] and the references
therein). In these works the order of convergence and the efficiency index
in the neighborhood of a simple root have been improved.

Using the technique that consists in composing a modification of New-
ton’s method with an iterative method we obtain a root-finder for solving
nonlinear equations with improved order of convergence and efficiency in-
dex. The key idea to improve or even double the order is to use only one
additional evaluation of the function instead of the two evaluations needed
when applying composition with Newton’s method, as it is well-known.

Currently, IEEE 64-bit floating-point arithmetic is sufficient for the most
commonly applications in order to obtain the accuracy desired. But, it is
increasing the number of applications where it is required to use a higher
level of numeric precision [1]. Namely, evaluating orthogonal polynomials,
high-precision solution of ODE’s, divergent asymptotic series, discrete dy-
namical systems, experimental mathematics, supernova simulations, climate
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modeling, and nonlinear oscillator theory among others. So, adaptive multi-
precision arithmetics facilities are most appropriate in a modern large-scale
scientific computing environment.

2. Main result

Let f(x) = 0 be a nonlinear equation where f : D ⊂ R −→ R is sufficiently
smooth in a neighborhood I of a simple root α. Let φ(x) be an iterative func-
tion of order of convergence p in I obtained using f(x), f ′(x), . . . , f (p−1)(x).
Hereafter, a technique that consists in an iterative method in two steps, is
presented. Namely,

zn = φ (xn), (2.1)

xn+1 = zn − f(zn) g ′q , (2.2)

where in (2.2) the factor 1/f ′(zn) in the classical Newton’s method has
been replaced by g ′q, which is an approximation of the derivative of the
inverse function of f . That is, if wn = f(zn), then zn = g(wn). Therefore,
g′(wn) = 1/f ′(zn). As we will see later on, this approximation is given by

g ′q = q
g(wn)− g(yn)
wn − yn

+
q−1∑
k=1

k − q
k!

g(k)(yn) (wn − zn)k−1, (2.3)

where yn = f(xn) and p and q are integers such that p ≥ q ≥ 2.

Recalling that (2.1) is of pth order of convergence and that we have computed
the function f and its derivatives up to order equal to p− 1 at point xn, to
analyze the order of the two-step iterative method given by (2.1) and (2.2),
we state and prove the following main result.

Theorem 2.1. Let e and E be the errors en = xn − α and En = zn − α =
K ep +O(ep+1) in sequences {xn} and {zn} respectively. Then the order of
the iterative method defined by (2.1)–(2.2) is equal to p+ q. More precisely,

|en+1| =


|Bq+1 f

′(α)qK ep+q| + O(ep+q+1), if p > q, and∣∣[(−1)q Bq+1 f
′(α)q + A2K]K e2p

∣∣ + O(e2p+1), if p = q,

where Ak =
f (k)(α)
k! f ′(α)

, and Bk =
g(k)(0)
k! g′(0)

, k ≥ 2.

Proof. Putting y instead of yn and w instead of wn, and considering
Taylor’s developments of the functions g(w) and g′(w) in powers of w − y,
we obtain
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g(w) =
q∑
i=0

g(i)(y)
i!

(w − y)i +
g(q+1)(ξ)
(q + 1)!

(w − y)q+1, (2.4)

g′(w) =
q∑
j=1

g(j)(y)
(j − 1)!

(w − y)j−1 +
g(q+1)(η)

q!
(w − y)q, (2.5)

where ξ and η lie between y and w. From (2.4) we get g(q)(y) that after
putting it into (2.5) yields

g′(w) =
q−1∑
j=1

g(j)(y)
(j − 1)!

(w − y)j−1 +
g(q+1)(η)

q!
(w − y)q

+
q

w − y

[
g(w)−

q−1∑
i=0

g(i)(y)
i!

(w − y)i − g(q+1)(ξ)
(q + 1)!

(w − y)q+1

]
= g ′q + Tq, (2.6)

where g ′q is given in (2.3), as claimed before, and

Tq =

(
g(q+1)(η)

q!
− q g(q+1)(ξ)

(q + 1)!

)
(w − y)q. (2.7)

From (2.7) and developing Tq in powers of w − y, we have

Tq =
g(q+1)(y)
(q + 1)!

(w − y)q + O
(
(w − y)q+1

)
, (2.8)

and from

g(y) = α+ g′(0)

(
y +

q+1∑
k=2

Bk y
k +O(yq+2)

)
,

we have g(q+1)(y) = g′(0) [(q + 1)!Bq+1 +O(y)].

Similarly, writing g(w) = g′(0)
[
w + B2w

2 +O(w3)
]

, we get

g′(w) = g′(0)
[
1 + 2B2w +O(w2)

]
. (2.9)

If we develop (2.8) in Taylor’s series at point 0, then we obtain

Tq = g′(0)Bq+1 (w − y)q +O(yq+1)
= (−1)q g′(0)Bq+1 y

q +O(yq+1). (2.10)

Substituting (2.9) and (2.10) into (2.6) yields

g ′q = g′(w)− Tq

= g′(0)
[
1 + 2B2w + O(w2) + (−1)q+1Bq+1 y

q + O(yq+1)
]
.
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Now setting

y = f(x) = f ′(α)

(
e+

q+1∑
k=2

Ak e
k +O(eq+2)

)
,

w = f(z) = f ′(α)
(
E + A2E

2 +O(E3)
)
,

we obtain

g ′q = g′(0)
[
1 + (−1)q+1Bq+1 f

′(α)q eq + 2 f ′(α)B2E + O(eq+1)
]

= g′(0)
[
1 + (−1)q+1Bq+1 f

′(α)q eq − 2A2E + O(eq+1)
]
,

where in the last expression we have put f ′(α)B2 = −A2.
Subtracting α from both sides of (2.2) we get en+1. Assuming that p > q,
from the previous expression of g ′q, we get

en+1 = E −
(
E +O(E2)

) (
1 + (−1)q+1f ′(α)q Bq+1 e

q + O(eq+1)
)

= (−1)qf ′(α)q Bq+1 e
q E + O(eq+1E).

On the other hand, if p = q, then

en+1 = E−(E+A2E
2+O(E3))(1+(−1)q+1f ′(α)qBq+1e

q−2A2E+O(eq+1))

= (−1)qf ′(α)qBq+1e
qE +A2E

2 +O(eq+1E).

Replacing E by E = K ep + O(ep+1) the statement follows. 2

For q = 3 equation (2.3) was used by Kou et al. in [6]. Other contribu-
tions related to family (2.3) can also be found in [5, 7].

Previously, we have set f ′(α)B2 = −A2. This relation can be easily
proven. From a theorem of Jabotinsky (see [4]), we have

f ′(α)q Bq+1 =
1

(q + 1)!

∑
(−1)r (q + r)!

q+1∏
`=2

A
β`
`

β` !
,

where the sum is taken over all nonnegative integers β` such that
∑q+1

`=2 (`−
1)β` = q, and where r =

∑q+1
`=2 β`. The proof of this theorem can also

be found in [9]. The values of Bq+1 in terms of Aj ’s, for 1 ≤ q ≤ 4, are
presented in Table 1.

We have used the classical definition of efficiency index given in [9]. That
is, EI = m1/r, where m is the local order of convergence of the method
and r is the number of evaluations of the functions per step. Considering
the improvement in the order obtained in Theorem 2.1 the efficiency index
is increased considerably. In the case in which the first step in the iterative
method is of pth order and there are p evaluations of the functions per
iteration, the efficiency index is EI = p1/p. By increasing the value of q ≥ 2
and applying Theorem 2.1, we obtain EI = (p+ q)1/p+1. In Table 2 several
values for efficiency are given.
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Table 1. Values of f ′(α)q Bq+1 in terms of Aj

q f ′(α)q Bq+1

1 −A2

2 2A2
2 −A3

3 −5A3
2 + 5 A2A3 −A4

4 14A4
2 − 21A2

2A3 + 6A2A4 + 3A2
3 −A5

Table 2. Efficiencies

p = 2 p = 3 p = 4

Method φ(x) 21/2 ≈ 1.414 31/3 ≈ 1.442 41/4 ≈ 1.414

q = 2 41/3 ≈ 1.587 51/4 ≈ 1.495 61/5 ≈ 1.431

q = 3 ——- 61/4 ≈ 1.565 71/5 ≈ 1.476

q = 4 ——- ——- 81/5 ≈ 1.516

3. Some related methods

In this section, some methods that give the best efficiency indexes for 2 ≤
p ≤ 4 are constructed. Notice that in Table 2 the best efficiency index cor-
respond to the case when q = p. The expression of the asymptotic constant
error for known methods is given. Furthermore, we have also computed
symbolically and in a different way, the asymptotic constant error for the
related methods presented and they agree with the results obtained using
Theorem 2.1.

• For p = 2, we choose Newton’s method as the z = φ(x) method. If we
write

zn = ψ2
2(xn) = xn − u(xn) and g ′2 = 2 [yn, wn]g − g ′(xn),

where u(xn) =
f(xn)
f ′(xn)

and [yn, wn]g =
g(wn)− g(yn)
wn − yn

=
zn − xn

f(zn)− f(xn)
,

then

xn+1 = zn − f(zn)
(

2
zn − xn

f(zn)− f(xn)
− 1
f ′(xn)

)
,

or
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xn+1 = ψ4
2(xn) = zn −

f(xn) + f(zn)
f(xn)− f(zn)

f(zn)
f ′(xn)

.

Recall that the expression of error in Newton’s method is E = A2 e
2
n +O3.

In the method described here the order goes from 2 to 4 and the difference
error equation is

en+1 = A2

(
3A2

2 −A3

)
e4n + O5,

which agrees with the result of Theorem 2.1 for this particular case.

• For p = 3, we use Chebyshev’s method (see [2]) as the z = φ(x) method.
If we write

zn = ψ3
3(xn) = xn −

(
1 +

1
2
L(xn)

)
u(xn),

and

g ′3 = 3 [yn, wn]g − 2 g ′(yn) − 1
2
g ′′(yn) (wn − yn)

= 3
zn − xn

f(zn)− f(xn)
− 2
f ′(xn)

+
f ′′(xn)

2 f ′(xn)3
(f(zn)− f(xn)) ,

where L(xn) =
f ′′(xn)
f ′(xn)

u(xn) , then we have xn+1 = ψ6
3(xn) = zn − f(zn) g ′3.

Note that the error in Chebyshev’s method is E =
(
2A2

2 −A3

)
e3n+O4. The

error difference equation in this improved method is

en+1 =
(
2A2

2 −A3

) (
7A2

3 − 6A2A3 +A4

)
e6n + O7,

agreeing again with Theorem 2.1.

• For p = 4, the method z = φ(x) considered is Schröeder’s method (see [8]).
Writing

zn = ψ4
4(xn) = xn −

(
1 +

1
2
L(xn) − 1

6
M(xn)u(xn)2

)
u(xn),

and

g ′4 = 4 [yn, wn]g − 3 g′(yn) − g′′(yn) (wn − yn)− 1
6
g′′′(yn) (wn − yn)2

= 4
zn − xn

f(zn)− f(xn)
− 3
f ′(xn)

+
f ′′(xn)
f ′(xn)3

(f(zn)− f(xn))

+
1
6

(
f ′′′(xn)
f ′(xn)4

− 3 f ′′(xn)2

f ′(xn)5

)
(f(zn)− f(xn))2 ,

where

M(xn) =
f ′′′(xn)
f ′(xn)

−3
(
f ′′(xn)
f ′(xn)

)2

,we have xn+1 = ψ8
4(xn) = zn− f(zn)g ′4.
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The error in Schröeder’s method is E =
(
5A3

2 − 5A2A3 +A4

)
e4n+O5. The

improved method presented here is of 8-th order and the error equation is

en+1 = (5A3
2−5A2A3 +A4)(19A2

4−26A2
2A3 +7A2A4 +3A3

2−A5)e8n+O9,

agreeing again with it was obtained in Theorem 2.1.

Table 3. Test functions, their roots and their initial points

function α x0

f1(x) = x3 − 3x2 + x− 2 2.893289 2.5
f2(x) = x3 + cosx− 2 1.172578 1.5
f3(x) = 2 sinx+ 1− x 2.380061 2.5
f4(x) = (x+ 1) e−x − 1 0.557146 1.0
f5(x) = ex

2+7x−30 − 1 3.0 2.94
f6(x) = e−x + cos(x) 1.746140 1.5
f7(x) = x− 3 lnx 1.857184 2.0

4. Numerical experiments and comparison

We have tested the preceding methods with seven functions using the Maple
computer algebra system. We have computed the root of each function for
initial approximation x0, and we have defined at each step of the iterative
method the length of the floating point arithmetic with multi-precision given
by

Digits := ρ× [− log |ek| + 2 ] ,

where ρ is the order of the method which extends the length of the mantissa
of the arithmetic, and [x] is the largest integer less than or equal to x. The
iterative method is stopped when |ek| = |xk − α| < 10−η, where η = 3000
and α is the root. If in the last step of any iterative method it is necessary
to increase the number of digits beyond 3000, then it is done. Table 3 shows
the expression of the functions tested, the initial approximation x0 which is
the same for all the methods, and the approximation of root α with seven
significant digits. The functions tested are the same as those presented in [3].

In Table 4, for each method and function, the number of iterations
needed to compute the root to the level of precision described is shown.
The notation works as follows: Newton’s iterative method and the modi-
fied method are written as ψ2

2 (p = 2) and ψ4
2 (p = 2, q = 2). Cheby-

shev’s methods are represented by ψ3
3 (p = 3), ψ5

3 (p = 3, q = 2) and
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Table 4: Iteration number and total number of function evaluations (TNFE)

ψ2
2 ψ4

2 ψ3
3 ψ5

3 ψ6
3 ψ4

4 ψ6
4 ψ7

4 ψ8
4

f1(x) 13 7 9 6 6 7 6 5 5
f2(x) 13 7 8 6 5 7 5 5 5
f3(x) 11 6 8 5 5 6 5 4 4
f4(x) 13 7 8 6 5 7 5 5 5
f5(x) 14 8 9 6 6 7 6 6 5
f6(x) 11 6 8 5 5 6 5 5 4
f7(x) 12 6 8 6 5 6 5 5 4

Iter 87 47 58 40 37 46 37 35 32

TNFE 174 141 174 160 148 184 185 175 160

ψ6
3 (p = 3, q = 3). For Schröeder’s method and the modified method we have

ψ4
4 (p = 4), ψ6

4 (p = 4, q = 2), ψ7
4 (p = 4, q = 3) and ψ8

4 (p = 4, q = 4).
In a compact way the notation used is ψp+qp . Notice the low cost of the
iteration functions ψ4

2 and ψ6
3, which show higher efficiency index than the

other methods considered. In general the results are excellent: the order is
maximized and the total number of function evaluations is lowest for the
iterative methods ψ4

2 and ψ6
3.

Finally, we conclude that the methods ψ4
2 and ψ6

3 presented in this pa-
per are competitive with other efficient equation solvers, such as Newton’s,
Chebyshev’s and Schröeder’s methods (ψ2

2, ψ3
3 and ψ4

4 respectively).

5. Concluding remarks

A technique for accelerating the order of convergence of a given iterative
process with an additional evaluation of the function is implemented. Fur-
thermore, we have analyzed the new schemes obtained from three particular
cases: Newton’s, Chebyshev’s and Schröeder’s methods. Order of conver-
gence and efficiency index have been improved in all these cases. The results
have been computationally tested on a set of functions.

Due to the fact that when the order of convergence of any iterative
method is high, we need to carry out the computations for testing it with an
enlarged mantissa. A multi-precision and adaptive floating-point arithmetics
with low computing time must be used in all the calculations, as we have
done in this work.
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[8] E. Schröder, Über unendlich viele Algorithmen zur Auflösung der Gleichungen,
Math. Ann., 2 (1870), 317-365.

[9] J.F. Traub, Iterative methods for the solution of equations, Prentice-Hall, Englewood
Cliffs, New Jersey, 1964.

[10] S. Weerakoon and T.G.I. Fernando, A variant of Newton’s method with accel-
erated third-order convergence, Appl. Math. Lett., 13 (2000), 87-93.

Miquel Grau-Sánchez and José Luis Dı́az-Barrero
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