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1. Introduction

Let Ω ⊂ RN , N ≥ 3, be a bounded domain with a smooth boundary ∂Ω.
We consider the following Neumann problem{

−∆u+ u = µQ(x)u2∗−1 in Ω,
∂u
∂ν = λuq−1 on ∂Ω, u > 0 on Ω

(1.1)

where Q(x) is a continuous and positive function on Ω̄. λ > 0 and µ > 0
are parameters and 2∗ = 2N

N−2 denotes the critical Sobolev exponent. It is

assumed that exponent q satisfies 1 < q < 2∗∗, where 2∗∗ = 2(N−1)
N−2 is a

critical Sobolev exponent for the trace embedding.

In recent years problems of the form (1.1) (with a nonlinearity at the
boundary condition) have attracted considerable interest. These problems
originate in the studies of optimal constants for the Sobolev trace embed-
dings, in the theory of quasi-conformal mappings on Riemannian manifolds
and reaction diffusion problems [12], [13], [15], [6]. We also refer to pa-
pers [19], [17] and [24], where further bibliographical references can be found.
Our goal is to investigate problem (1.1) in two cases: (i) 1 < q < 2 (concave
case) and (ii) 2 ≤ q < 2∗∗ (convex case). For the results in the case q = 2∗∗,
we refer to papers [9], [10] and [21]. In the case of the Dirichlet problem,
the first existence results have been obtained in [4]. In this case a concave
- convex perturbation appears in the right hand side of the equation. Since
then, problems involving concave nonlinearities have been studied by many
authors (see [16], [20], [23] and bibliographical references given there).
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We point out that we are mainly interested in the existence of positive so-
lutions of problem (1.1). This problem can be regarded as a stationary state
of the corresponding evolution equation. The right hand side of equation
(1.1) contains a positive reaction term and the boundary condition involves
a positive flux term through the boundary. In order to obtain equilibrium
the left hand side of equation (1.1) contains a term +u (see also [16]). In
the final part of this paper we also consider problem (1.1) without the term
+u on the left hand side of the equation. To obtain positive solutions in
this situation, we assume that the coefficient Q(x) changes sign.

Throughout this work we use standard notations. The norms in the
Lebesgue spaces Lp(Ω), 1 ≤ p < ∞ are denoted by ‖ · ‖p. The symbol |A|
stands for the Lebesgue measure of a set A ⊂ RN . The Hausdorff N − 1
dimensional measure is denoted by the same symbol. In a given Banach
space X, we denote strong convergence by ”→ ” and weak convergence by
” ⇀ ”. The duality pairing between X and its dual space X∗ is denoted
by 〈·, ·〉. Solutions of problem (1.1) are sought in the Sobolev space H1(Ω).
We recall that by H1(Ω) we denote the usual Sobolev space equipped with
norm

‖u‖2 =
∫

Ω

(
|∇u|2 + |u|2

)
dx.

The paper is organized as follows. In Section 2 we give a nonexistence
result in the concave case. In Sections 3 and 4 we discuss the existence of
solutions in the concave case. Our approach is based on the Ekeland varia-
tional principle and the mountain-pass theorem (see [14] and [3]). Section 5
is devoted to the convex case. In the final Section 6 we investigate problem
(1.1) without the term +u on the left hand side of equation (1.1).

2. Nonexistence of positive solutions in the concave case

It follows from the regularity theory that solutions to problem (1.1) are
continuous and positive on Ω̄ (see [17]). We put QM = maxx∈Ω̄Q(x) and
Qm = maxx∈∂ΩQ(x). For technical purposes we transform the unknown
function u in (1.1) to transfer a parameter µ to the boundary condition.

Let v = u
β , where a constant β > 0 will be chosen in the following way.

It is clear that v satisfies{
−∆v + v = µβ2∗−2Q(x)v2∗−1 in Ω,
∂v
∂ν = λβq−2vq−1 on ∂Ω, v > 0 on Ω.

(2.1)

We choose β so that µβ2∗−2 = 1. With this choice of β (2.1) becomes{
−∆v + v = Q(x)v2∗−1 in Ω,
∂v
∂ν = λµ

2−q
2∗−2 vq−1 on ∂Ω, v > 0 on Ω.

(2.2)
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A solution v ∈ H1(Ω) of (2.2) is understood in the weak sense∫
Ω

(∇v∇φ+ vφ) dx =
∫

Ω
Q(x)v2∗−1φdx+ λµ

2−q
2∗−2

∫
∂Ω
vq−1φdSx (2.3)

for every function φ ∈ H1(Ω). An analogous definition applies to problem
(1.1).

Proposition 2.1. Suppose that 1 < q < 2. If

λµ
2−q
2∗−2 >

(2∗ − 2)(2− q)
2−q
2∗−2 |Ω|

(2∗ − q)
2∗−q
2∗−2Q

2−q
2∗−2
m |∂Ω|

,

then problem (2.2) does not have a solution.

Proof. Suppose that v is a solution of (2.2). We take as a test function in
(2.3) φ = v1−q. Since v > 0 on Ω̄, v ∈ H1(Ω). We have

(1− q)
∫

Ω
|∇v|2v−q dx+

∫
Ω
v2−q dx =

∫
Ω
Q(x)v2∗−q dx+ λµ

2−q
2∗−2

∫
∂Ω

dSx.

(2.4)
By the Young inequality we have for δ > 0∫

Ω
v2−q dx ≤ 2− q

2∗ − q
δ

2∗−q
2−q

∫
Ω
v2∗−q dx+

(2∗ − 2)|Ω|

(2∗ − q)δ
2∗−q
2∗−2

≤ 2− q
2∗ − q

δ
2∗−q
2−q

1
Qm

∫
Ω
Q(x)v2∗−q dx+

(2∗ − 2)|Ω|

(2∗ − q)δ
2∗−q
2∗−2

.

Choosing δ so that 2−q
2∗−q δ

2∗−q
2−q = Qm, we derive the following estimate∫

Ω
v2−q dx ≤

∫
Ω
Q(x)v2∗−q dx+

(2∗ − 2)(2− q)
2−q
2∗−2 |Ω|

(2∗ − q)
2∗−q
2∗−2Q

2−q
2∗−2
m

.

Inserting this inequality into (2.4) we obtain

λµ
2−q
2∗−2 |∂Ω| ≤ (2∗ − 2)(2− q)

2−q
2∗−2 |Ω|

(2∗ − q)
2∗−q
2∗−2Q

2−q
2∗−2
m

and the result follows. 2

Lemma 2.1. Any solution to problem (2.2) with 1 < q < 2∗∗ satisfies the
following estimates∫

∂Ω
vq−1 dSx ≤ λ−1µ−

2−q
2∗−2

(2∗ − 2)|Ω|
(2∗ − 1) [(2∗ − 1)Qm]

1
2∗−2

(2.5)
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and

Qm

∫
Ω
v2∗−1 dx ≤

∫
Ω
Q(x)v2∗−1 dx ≤ (2∗ − 2)

(
2

2∗ − 1

) 2∗−1
2∗−2 |Ω|

Q
1

2∗−2
m

. (2.6)

Proof. Testing (2.3) with φ(x) = 1 we obtain∫
Ω
v dx =

∫
Ω
Q(x)v2∗−1 dx+ λµ

2−q
2∗−1

∫
∂Ω
vq−1 dSx. (2.7)

Applying the Young inequality we get∫
Ω
v dx ≤

∫
Ω
Q(x)v2∗−1 dx+

2∗ − 2
2∗ − 1

|Ω| 1

[(2∗ − 1)Qm]
1

2∗−2

.

Combining this inequality with (2.7) we derive (2.5). To derive the estimate
(2.6) we use the Young inequality in the following way: for every δ > 0 we
have ∫

Ω
v dx ≤ δ2∗−1

(2∗ − 1)Qm

∫
Ω
Q(x)v2∗−1 dx+

(2∗ − 2)|Ω|

(2∗ − 1)δ
2∗−1
2∗−2

.

We choose δ =
(

(2∗−1)Qm
2

) 1
2∗−1

. We then get

∫
Ω
v dx ≤ 1

2

∫
Ω
Q(x)v2∗−1 dx+

(2∗ − 2)2
1

2∗−2 |Ω|

(2∗ − 1)
2∗−1
2∗−2Q

1
2∗−2
m

.

This combined with (2.7) yields (2.6). 2

In the sequel we only use estimate (2.6).

3. Local minimization (concave case)

Since the nonlinearity at the boundary condition is concave we can expect
the existence of at least two distinct solutions. Both solutions will be ob-
tained as critical points of the variational functional

Jλ,µ(u) =
1
2

∫
Ω

(
|∇u|2 + u2

)
dx− 1

2∗

∫
Ω
Q(x)|u|2∗ dx− λµ

2−q
2∗−2

q

∫
∂Ω
|u|q dSx.

It is clear that this functional is of class C1 on H1(Ω).

Throughout this paper we frequently use the following best Sobolev con-
stants

S = inf
H1

0 (Ω)−{0}

∫
Ω |∇u|

2 dx(∫
Ω |u|2

∗ dx

) 2
2∗
,
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S1 = inf
H1(Ω)−{0}

∫
Ω

(
|∇u|2 + u2

)
dx(∫

Ω |u|2
∗ dx

) 2
2∗

and the best Sobolev constant for the trace embedding

Sq = inf
H1(Ω)−{0}

∫
Ω

(
|∇u|2 + u2

)
dx(∫

∂Ω |u|q dSx
) 2
q

for 1 < q ≤ 2∗∗. Here H1
0 (Ω) is the Sobolev space obtained as the completion

of C1
0 (Ω) with respect to the norm

‖u‖2H1
0 (Ω) =

∫
Ω
|∇u|2 dx.

In Proposition 3.1, below, we show that the functional Jλ,µ has a mountain-
pass structure.

Proposition 3.1. Let 1 < q < 2. Then

(i) for every µ > 0 there exists λ◦ > 0, ρ > 0 and κ > 0 such that

Jλ,µ(u) ≥ κ for ‖u‖ = ρ and 0 < λ < λ◦,

(ii) for every λ > 0 there exists µ◦ > 0, ρ > 0 and κ > 0 such that

Jλ,µ(u) ≥ κ for ‖u‖ = ρ and 0 < µ < µ◦.

Moreover, in both cases we have

inf
‖u‖≤ρ

Jλ,µ(u) < 0. (3.1)

Proof. By the Sobolev embedding theorems we have

Jλ,µ(u) ≥ 1
2
‖u‖2 − S

− 2∗
2

1 QM
2∗

‖u‖2∗ − λµ
2−q
2∗−2

q
S
− q

2
q ‖u‖q.

First, we choose ρ > 0 so small that

1
2
‖u‖2 − S

− 2∗
2

1 QM
2∗

‖u‖2∗ ≥ 2κ
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for ‖u‖ = ρ and some constant κ > 0. It suffices now to choose either λ◦ > 0
small (for a fixed µ > 0) or a small µ◦ > 0 (for a fixed λ > 0) to obtain (i)
and (ii). Finally, taking t > 0 small enough we obtain

Jλ,µ(t) =
t2

2
|Ω| − t2

∗

2∗

∫
Ω
Q(x) dx− λµ

2−q
2∗−2

q
|∂Ω|tq < 0,

since 1 < q < 2. This obviously implies (3.1). 2

We are now in a position to establish the existence of the first solution.
In the proof we use the Ekeland variational principle [14] which generates
a (PS)c sequence. We recall that a C1-functional Φ : X → R on a Banach
space X satisfies the Palais - Smale condition at level c ∈ R ((PS)c condition
for short) if each sequence {xn} ⊂ X such that (*) Φ(xn) → c and (**)
Φ′(xn)→ 0 inX∗ is relatively compact inX. Finally, any sequence satisfying
(*) and (**) is called a Palais-Smale sequence at level c (a (PS)c sequence
for short).

Theorem 3.1. Let 1 < q < 2 and let λ◦ and µ◦ be chosen as in Proposi-
tion 3.1. Then

(i) for every fixed µ > 0 with 0 < λ < λ◦(µ) problem (2.2) admits a
solution,

(ii) for every fixed λ > 0 with 0 < µ < µ◦(λ) problem (2.2) admits a
solution.

Proof. We only consider the case (i). It follows from Proposition 3.1 that

aλµ = inf
‖u‖≤ρ

Jλ,µ(u) < 0.

By the Ekeland variational principle [14] there exists a (PS)aλµ sequence
{un} ⊂ H1(Ω). Since {un} is bounded in H1(Ω), we may assume, up to
a subsequence, that un ⇀ u in H1(Ω) and L2∗(Ω), un → u in L2(Ω) and
Lq(∂Ω). It is clear that u is a weak solution of (2.2). We then have

aλµ ≥ lim inf
n→∞

[
Jλ,µ(un)− 1

2∗
〈J ′λ,µ(un), un〉

]
≥ 1

N

∫
Ω

(
|∇u|2 + u2

)
dx−

(1
q
− 1

2∗
)
λµ

2−q
2∗−2

∫
∂Ω
|u|q dSx

= Jλ,µ(u)− 1
2∗
〈J ′λ,µ(u), u〉 = Jλ,µ(u) ≥ aλµ.

Thus Jλ,µ(u) = aλµ and u is a solution belonging to the interior of the
ball B(0, ρ). Since |u| is also a minimizer we may assume by the Harnack
inequality that u > 0 on Ω. 2
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4. Existence of a second solution (concave case)

In what follows we denote by uλµ a positive solution to problem (2.2) found
in Theorem 3.1.

Proposition 4.1. Suppose that 1 < q < 2 and let λ◦ and µ◦ be chosen as
in Proposition 3.1. If u = uλµ and u = 0 are the only critical points of Jλ,µ,
then (PS)c condition holds for

c < c̃ = Jλ,µ(uλµ) + min
(

S
N
2

NQ
N−2

2
M

,
S
N
2

2NQ
N−2

2
m

)
. (4.1)

Proof. (We obviously assume that either (i) or (ii) of Proposition 3.1
holds.) Let {un} ⊂ H1(Ω) be a (PS)c sequence for Jλ,µ, with c < c̃, that
is, Jλ,µ(un) → c and J ′λ,µ(un) → 0 in H−1(Ω). First, we show that {un} is
bounded in H1(Ω). We have

c+ o(1) + o(‖un‖) = Jλ,µ(un)− 1
2
〈J ′λ,µ(un), un〉

=
1
N

∫
Ω
|un|2

∗
dx+

(1
2
− 1
q

)
λµ

2−q
2∗−2

∫
∂Ω
|u|q dSx.

By the Sobolev trace embedding theorem we obtain

1
N

∫
Ω
|un|2

∗
dx ≤

(1
q
− 1

2
)
λµ

2−q
2∗−2S

− q
2

q ‖un‖q + c+ o(1) + o(‖un‖).

This inequality combined with the fact that Jλ,µ(un)→ c gives

1
2

∫
Ω

(
|∇un|2 + u2

n

)
dx ≤ c+ 1 +

1
2∗

∫
Ω
Q(x)|un|2

∗
dx

+
λµ

2−q
2∗−2

q

∫
∂Ω
|un|q dSx

≤ c+ 1 + C(‖un‖+ ‖un‖q)

for n ≥ n◦, where C > 0 is a constant independent of n. Since 1 < q < 2, we
see that {un} is bounded in H1(Ω). We may assume, up to a subsequence,
that un ⇀ u in H1(Ω), L2∗(Ω) and un → u in L2(Ω), Lq(Ω). By the P.L.
Lions’ concentration - compactness principle (see [18]) there exist at most
countable set of points {xj} ⊂ Ω̄, and positive numbers {µj}, {νj}, j ∈ J ,
such that

|un|2
∗
dx ⇀ dν = |u|2∗ dx+

∑
j∈J

νjδxj

and
|∇un|2 dx ⇀ dµ ≥ |∇u|2 dx+

∑
j∈J

µjδxj ,
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in the sense of measure, where δxj denotes the Dirac measures assigned to
point xj . Moreover, the numbers µj and νj satisfy the following inequalities

Sν
2
2∗
j ≤ µj if xj ∈ Ω, (4.2)

and
S

2
2
N

ν
2
2∗
j ≤ µj if xj ∈ ∂Ω. (4.3)

Testing J ′λ,µ(un) → 0 in H−1(Ω) with a family of functions ϕδ, δ > 0,
concentrating at xj as δ → 0, we derive

µj ≤ Q(xj)νj , j ∈ J. (4.4)

If νj > 0, then in the case xj ∈ Ω, (4.2) and (4.4) imply

νj ≥
S
N
2

Q(xj)
N
2

. (4.5)

On the other hand, if xj ∈ ∂Ω, then by (4.3) and (4.4) we obtain

νj ≥
S
N
2

2Q(xj)
N
2

. (4.6)

By the Brezis - Lieb lemma (see [7]) we get for vn = un − u∫
Ω
Q(x)|un|2

∗
dx =

∫
Ω
Q(x)|u|2∗ dx+

∫
Ω
Q(x)|vn|2

∗
dx+ o(1).

We also have∫
Ω
|∇un|2 dx =

∫
Ω
|∇u|2 dx+

∫
Ω
|∇vn|2 dx+ o(1).

These relations are used to rewrite

Jλ,µ(un) = c+ o(1) and J ′λ,µ(un) = o(1) in H−1(Ω)

in the following form

Jλ,µ(u) +
1
2

∫
Ω
|∇vn|2 dx−

1
2∗

∫
Ω
Q(x)|vn|2

∗
dx = c+ o(1) (4.7)

and ∫
Ω

(
|∇u|2 + u2

)
dx −

∫
Ω
Q(x)|u|2∗ dx− λµ

2−q
2∗−2

∫
∂Ω
|u|q dSx (4.8)

+
∫

Ω

(
|∇vn|2 −Q(x)|vn|2

∗)
dx = o(1).
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Since u is a weak solution of (2.2) we deduce from (4.8)∫
Ω
|∇vn|2 dx =

∫
Ω
Q(x)|vn|2

∗
dx+ o(1).

Substituting this into (4.7) we get

Jλ,µ(u) +
1
N

∫
Ω
|∇vn|2 dx = c+ o(1). (4.9)

From (4.2)–(4.6) we obtain the following inequalities

µj ≥
S
N
2

Q
N−2

2
M

if νj > 0, xj ∈ Ω

and

µj ≥
S
N
2

2Q
N−2

2
m

if νj > 0, xj ∈ ∂Ω.

To complete the proof, we show that if either u = 0 or u = uλµ, then
µj = νj = 0 for all j ∈ J . Arguing by contradiction, we would have νj > 0

for some j ∈ J . Then by (4.9) we would have in the first case S
N
2

Q
N−2

2
M

≤ c if

xj ∈ Ω and S
N
2

2Q
N−2

2
m

≤ c if xj ∈ ∂Ω. This shows that

c ≥ min
(

S
N
2

NQ
N−2

2
M

,
S
N
2

2NQ
N−2

2
m

)

which is impossible. If u = uλµ we would have

Jλ,µ(uλµ) +
S
N
2

NQ
N−2

2
M

≤ c if xj ∈ Ω

and

Jλ,µ(uλµ) +
S
N
2

2NQ
N−2

2
m

≤ c if xj ∈ ∂Ω.

This yields

Jλ,µ(uλµ) + min
(

S
N
2

NQ
N−2

2
M

,
S
N
2

2NQ
N−2

2
m

)
≤ c

which gives a contradiction. 2
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A second solution will be obtained by the mountain-pass principle (see
[3]). First we consider the case QM ≤ 2

2
N−2Qm. Then (PS)c condition holds

for

c ≤ Jλ,µ(uλµ) +
S
N
2

2NQ
N−2

2
m

.

For simplicity we assume that Qm = Q(0), 0 ∈ ∂Ω. To estimate the energy
level of Jλ,µ we use a family of instantons

Uε,y(x) =
cN ε

N−2
2(

ε2 + |x− y|2
)N−2

2

, ε > 0, y ∈ RN .

It is known that Uε,y satisfies the equation

−∆u = |u|2∗−2u in RN

and
‖Uε,y‖2

∗
2∗ = ‖∇Uε,y‖22 = S

N
2 .

If y = 0 we put Uε = Uε,0. If H(0) denotes the mean curvature of ∂Ω at 0,
then the following estimates hold

∫
Ω |∇Uε|

2 dx(∫
Ω U

2∗
ε dx

) 2
2∗
≤


S

2
2
N
−ANH(0)ε log 1

ε +O(ε) if N = 3,
S

2
2
N
−ANH(0)ε+O

(
ε2 log 1

ε

)
if N = 4,

S

2
2
N
−ANH(0)ε+O

(
ε2
)

if N ≥ 5,
(4.10)

where AN > 0 is a constant depending on N (see [1], [2], [22]).

Proposition 4.2. Suppose that 1 < q < 2 and N ≥ 5 and let λ◦, µ◦ be
constants chosen in Proposition 3.1. Assume that either (i) or (ii) of The-
orem 3.1 holds. Suppose that QM ≤ 2

2
N−2Qm, Qm = Q(0), 0 ∈ ∂Ω and

H(0) > 0 and that

|Q(x)−Q(0)| = o(|x|) for x near 0. (4.11)

Then

max
t≥0

Jλ,µ(uλµ + tUε) < Jλ,µ(uλµ) +
S
N
2

2NQ
N−2

2
m

for ε > 0 sufficiently small.

Proof. We use some ideas from the proof of Lemma 2.5 in [20]. We use the
following inequality: given q > 2 and κ ∈ (1, q − 1) there exists a constant
C > 0 such that

(s+ t)q ≥ sq + tq + qsq−1t+ qstq−1 − Ctκsq−κ
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for every s ≥ 0 and t ≥ 0. Applying this inequality to the integral∫
Ω
Q(x)

(
uλµ + tUε

)2∗
dx with κ =

N + 1
N − 2

we get

Jλ,µ(uλµ + tUε) ≤
1
2

∫
Ω
|∇uλµ|2 dx+

t2

2

∫
Ω
|∇Uε|2 dx+ t

∫
Ω
∇uλµ∇Uε dx

+
1
2

∫
Ω
u2
λµ dx+

t2

2

∫
Ω
U2
ε dx+ t

∫
Ω
Uεuλµ dx

− t2
∗

2∗

∫
Ω
Q(x)U2∗

ε dx− 1
2∗

∫
Ω
Q(x)u2∗

λµ dx

− t2
∗−1

∫
Ω
Q(x)U2∗−1

ε uλµ dx− t
∫

Ω
Q(x)u2∗−1

λµ Uε dx

+ Ct
N+1
N−2

∫
Ω
Q(x)u

N−1
N−2

λµ U
N+1
N−2
ε dx

− λµ
2−q
2∗−2

q

∫
∂Ω

(
uλµ + tUε

)q
dSx

= Jλ,µ(uλµ) +
λµ

2−q
2∗−2

q

∫
∂Ω

[
uqλµ −

(
uλµ + tUε

)q]
dSx

+ λµ
2−q
2∗−2 t

∫
∂Ω
uq−1
λµ Uε dSx

+
t2

2

∫
Ω

(
|∇Uε|2 + U2

ε

)
dx− t2∗−1

∫
Ω
Q(x)U2∗−1

ε uλµ dx

+ Ct
N+1
N−2

∫
Ω
Q(x)u

N−1
N−2

λµ U
N+1
N−2
ε dx− t2

∗

2∗

∫
Ω
Q(x)U2∗

ε dx.

We now use the inequality

1
q

(
uλµ + tUε

)q − uqλµ
q
− tuq−1

λµ Uε ≥ 0

to obtain

Jλ,µ(uλµ + tUε) ≤ Jλ,µ(uλµ) +
t2

2

∫
Ω

(
|∇Uε|2 + U2

ε

)
dx (4.12)

− t2
∗

2∗

∫
Ω
Q(x)U2∗

ε dx− t2∗−1

∫
Ω
Q(x)U2∗−1

ε uλµ dx

+ Ct
N+1
N−2

∫
Ω
u
N−1
N−2

λµ U
N+1
N−2
ε dx.

To proceed further we need the following estimate∫
Ω
Q(x)u

N−1
N−2

λµ U
N+1
N−2
ε dx ≤ Cε

N−1
2
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for some constant C > 0, independent of ε > 0. Combining this estimate
with (4.12) we obtain

Jλ,µ(uλµ + tUε) ≤ Jλ,µ(uλµ) +
t2

2

∫
Ω

(
|∇Uε|2 + U2

ε

)
dx (4.13)

− t2
∗

2∗

∫
Ω
Q(x)U2∗

ε dx+ Φε(t),

where
Φε(t) = Ct

N+1
N−2 ε

N−1
2 .

We put

Ψε(t) =
t2

2

∫
Ω

(
|∇Uε|2 + U2

ε

)
dx− t2

∗

2∗

∫
Ω
Q(x)U2∗

ε dx+ Φε(t).

It obvious that limt→0 Ψε(t) = 0 and limt→∞Ψε(t) = −∞. Hence there
exists tε > 0 such that Ψε(tε) = maxt≥0 Ψε(t). We now show that there exist
numbers 0 < T1 < T2 such that T1 ≤ tε ≤ T2 for every ε > 0 sufficiently
small. By Proposition 3.1 we have

0 < κ ≤ max
t≥0

Jλ,µ(uλµ + tUε) ≤ Jλ,µ(uλµ) + Ψε(tε) < Ψε(tε).

This shows that tε 6→ 0 as ε → 0. Therefore there exists 0 < T1 such that
0 < T1 ≤ tε for ε > 0 small. To find an upper bound for tε we argue by
contradiction. Assume that tεn → ∞ for some sequence εn → 0. Then
Ψ′εn(tεn) = 0, so

tεn

∫
Ω

(
|∇Uεn |2 + U2

εn

)
dx = t

N+2
N−2
εn

∫
Ω
Q(x)U2∗

εn dx− C
N + 1
N − 2

t
3

N−2
εn ε

N−2
2

n .

We rewrite this relation as

t
− 4
N−2

εn

∫
Ω

(
|∇Uεn |2 + U2

εn

)
dx =

∫
Ω
Q(x)U2∗

εn dx− C
N + 1
N − 2

t
−N−1
N−2

εn ε
N−2

2
n .

It is clear that the above relation cannot be satisfied for large n, as the left-
hand side tends to 0 and

∫
Ω U

2∗
εn dx 6→ 0 as n → ∞. From (4.13) we derive

the following estimate

Jλ,µ(uλµ + tUε) ≤ Jλ,µ(uλµ) +

(∫
Ω

(
|∇Uε|2 + U2

ε

)
dx

)N
2

N

(∫
ΩQ(x)U2∗

ε dx

)N−2
2

+ Φε(t).

Assumption (4.11) implies the following expansion∫
Ω
Q(x)U2∗

ε dx = Qm

∫
Ω
U2∗
ε dx+ o(ε).
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We now observe that Φε(tε) = o(ε) and
∫

Ω U
2
ε dx = O

(
ε2
)

for N ≥ 5.
Therefore the last two relations combined with (4.10) give

max
t≥o

Jλ,µ(uλµ + tUε) < Jλ,µ(uλµ) +
S
N
2

2NQ
N−2

2
m

.

2

To find a second solution we choose w ∈ H1(Ω) such that w ∈ H1(Ω)
and ‖w‖ > ρ and set

Γ = {γ ∈ C([0, 1], H1(Ω)) | γ(0) = 0, γ(1) = w}.

Theorem 4.1. Let N ≥ 5 and 0 < q < 2. Suppose that the assumptions of
Proposition 4.2 are satisfied. Then in both cases (i) and (ii) (see Proposi-
tion 3.1) problem (2.2) admits a second solution.

Proof. Suppose that 0 and uλµ are the unique critical points of Jλ,µ.
Applying the mountain-pass principle we derive the existence of a critical
point v satisfying Jλ,µ(v) ≥ κ > 0 which is obviously distinct from 0 and
uλµ. This gives a contradiction. 2

We now consider the case QM > 2
2

N−2Qm. In this case we have

c̃ = Jλ,µ(uλµ) +
S
N
2

NQ
N−2

2
M

.

For the ease of notation we set

KN (|Ω|, Qm) = |Ω|
(

1
2

+
CN

Q
1

2∗−2
m

)
,

where CN = (2∗ − 2)
(

2
2∗−1

) 2∗−1
2∗−2 .

Lemma 4.1. Let uλµ be a solution of (2.2) from Theorem 3.1. Suppose that
(i) and (ii) of Proposition 3.1 hold. Then

max
t≥0

Jλ,µ(uλµ + t) ≤ Jλ,µ(uλµ)

+ max

KN (|Ω|, Qm),
1
N

(
2KN (|Ω|, Qm)

) 2∗
2∗−2

(∫
Ω
Q(x) dx

)− 2
2∗−2

 .
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Proof. We have

Jλ,µ(uλµ + t) =
1
2

∫
Ω
|∇uλµ|2 dx+

1
2

∫
Ω
u2
λµ dx+

t2

2
|Ω|+ t

∫
Ω
uλµ dx

− 1
2∗

∫
Ω
Q(x)(uλµ + t)2∗ dx− λµ

2−q
2∗−2

q

∫
∂Ω

(uλµ + t)q dSx

= Jλ,µ(uλµ) +
1
2∗

∫
Ω
Q(x)u2∗

λµ dx

+ t

∫
Ω
Q(x)u2∗−1

λµ dx− 1
2∗

∫
Ω
Q(x)(uλµ + t)2∗ dx

+
1
q
λµ

2−q
2∗

∫
∂Ω
uqλµ dSx + tλµ

2−q
2∗−2

∫
∂Ω
uq−1
λµ dSx

− λµ
2−q
2∗−2

q

∫
∂Ω

(uλµ + t)q dSx +
t2

2
|Ω|

≤ Jλ,µ(uλµ) +
t2

2
|Ω|+ 1

2∗

∫
Ω
Q(x)u2∗

λµ dx

− 1
2∗

∫
Ω
Q(x)(uλµ + t)2∗ dx+ t

∫
Ω
Q(x)u2∗−1

λµ dx.

We now use the following inequality

(uλµ + t)2∗ − u2∗
λµ ≥ t2

∗

for all t ≥ 0 and estimate (2.6) (see Lemma 2.1). So

Jλ,µ(uλµ + t) ≤ Jλ,µ(uλµ) +
t2

2
|Ω|+ t

|Ω|CN

Q
1

2∗−2
m

− t2
∗

2∗

∫
Ω
Q(x) dx,

where CN = (2∗ − 2)
(

2
2∗−1

) 2∗−1
2∗−2 . Let

g(t) =
t2

2
|Ω|+ t

|Ω|CN

Q
1

2∗−2
m

− t2
∗

2∗

∫
Ω
Q(x) dx.

If 0 ≤ t ≤ 1, then g(t) ≤ |Ω|2 + |Ω|CN

Q
1

2∗−2
m

. If t ≥ 1, then

g(t) ≤ max
t≥1

g(t) ≤ max
t≥0

(1
2

+
CN

Q
1

2∗−2
m

)
|Ω|t2 − t2

∗

2∗

∫
Ω
Q(x) dx



=
1
N

2|Ω|
(

1
2

+
CN

Q
1

2∗−2
m

) 2∗
2∗−2 (∫

Ω
Q(x) dx

)− 2
2∗−2

and the assertion of Lemma follows. 2
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Theorem 4.2. Let 0 < q < 2 and QM > 2
2

N−2Qm. Suppose that

max

KN (|Ω|, Qm),
1
N

(
2KN (|Ω|, Qm)

) 2∗
2∗−2

(∫
Ω
Q(x) dx

)− 2
2∗−2


<

S
N
2

2NQ
N−2

2
m

. (4.14)

Then in both cases (i) and (ii) (see Proposition 3.1) problem (2.2) admits a
second solution.

It is clear that condition (4.14) is satisfied for sets of small measure.

Similarly, the inequality

max

KN (|Ω|, Qm),
1
N

(
2KN (|Ω|, Qm)

) 2∗
2∗−2

(∫
Ω
Q(x) dx

)− 2
2∗−2


<

S
N
2

2NQ
N−2

2
m

guarantees the existence of a second solution of problem (2.2) in the case

QM ≤ 2
2

N−2Q
N−2

2
m .

Remark 4.1. According to Theorems 3.2, 4.3 and 4.5 for every µ > 0
there exists λ◦(µ) > 0 such that problem (2.2) admit solutions w̄λµ and w̃λµ
satisfying Jλ,µ(w̄λµ) < 0 and Jλ,µ(w̃λµ) > 0, respectively. Then ūλµ = βw̄λµ
and ũλµ = βw̃λµ are solutions of problem (1.1). It then follows from estimate
(2.6) that∫

Ω
ū2∗−1
λµ dx ≤ β2∗−1CN |Ω|Q

− 2∗−1
2∗−2

m and
∫

Ω
ũ2∗−1
λµ dx ≤ β2∗−1CN |Ω|Q

− 2∗−1
2∗−2

m .

Moreover, if µ→∞, then β → 0 (and λ◦(µ)→ 0). This means that ūλµ → 0

and ũλµ → 0 in L
N+2
N−2 (Ω) as µ→∞.

5. Convex case (2 ≤ q < 2∗∗)

In this case the dependence of equation (1.1) on a parameter µ > 0 is
irrelevant. Hence we consider the problem{

−∆u+ u = Q(x)u2∗−1 in Ω,
∂u
∂ν = λuq−1 on ∂Ω, u > 0 on Ω.

(5.1)
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We distinguish two cases: (i) q = 2 and (ii) 2 < q < 2∗∗. Solutions in both
cases will be obtained through the mountain-pass principle applied to the
functional

Jλ,q(u) =
1
2

∫
Ω

(
|∇u|2 + u2

)
dx− 1

2∗

∫
Ω
Q(x)|u|2∗ dx− λ

q

∫
∂Ω
|u|q dSx.

We commence with the case (i). We note that if u is a solution of problem
(5.1) then u is continuous and positive on Ω̄. Testing (5.1) with φ = 1

u we
obtain the following result:

Proposition 5.1. Let q = 2. Then problem (5.1) does not admit a solution
for λ > |Ω|

|∂Ω| .

Proposition 5.2. Let q = 2. Then there exist constants Λ◦ > 0, κ > 0 and
ρ > 0 such that

Jλ,2(u) ≥ κ for ‖u‖ = ρ and 0 < λ < Λ◦. (5.2)

The proof is similar to that of Proposition 3.1 and is omitted.

Proposition 5.3. Let q = 2 and 0 < λ < Λ◦. Then (PS)c condition for
Jλ,2 holds for

c < min
(

S
N
2

NQ
N−2

2
M

,
S
N
2

2NQ
N−2

2
m

)
. (5.3)

Proof. Let {un} ⊂ H1(Ω) be a (PS)c sequence for Jλ,2. Then

c+ 1 + o(‖un‖) = Jλ,2(un)− 1
2∗
〈J ′λ,2(un), un〉 =

1
N

∫
Ω

(
|∇un|2 + u2

n

)
dx

−
(1
q
− 1

2∗
)
λ

∫
∂Ω
|un|2 dSx.

Using the trace Sobolev embedding theorem and taking Λ◦ smaller, if nec-
essary, we derive from the above relation that {un} is bounded in H1(Ω).
We may assume that, up to a subsequence, un ⇀ u in H1(Ω), L2∗(Ω) and
un → u in L2(Ω), L2(∂Ω). We now apply the P.L. Lions’ concentration
- compactness principle. So there exist at most countable sets of points
{xj} ⊂ Ω̄ and positive {νj}, {µj}, j ∈ J , such that

|un|2
∗
⇀ dν = |u|2∗ dx+

∑
j∈J

νjδxj



On the Neumann problem with a nonlinear boundary condition 43

and
|∇un|2 ⇀ dµ ≥ |∇u|2 dx+

∑
j∈J

µjδxj

where νj and µj satisfy (4.2),(4.3) and (4.4). Assuming that νj > 0 for some
j ∈ J , we get as in the proof of Proposition 4.1, estimates (4.5) and (4.6).
Hence

c = lim
n→∞

[
Jλ,2(un)− 1

2
〈J ′λ,2(un), un〉

]
=

1
N

(∫
Ω
Q(x)|u|2∗ dx+

∑
j∈J

νjQ(xj)
)

≥ min
(

S
N
2

NQ
N−2

2
M

,
S
N
2

2NQ
N−2

2
m

)
,

which is impossible. 2

We can now formulate the following existence result:

Theorem 5.1. Let N ≥ 5, q = 2 and QM ≤ 2
2

N−2Qm. Suppose that
H(0) > 0, Qm = Q(0), 0 ∈ ∂Ω and that Q satisfies (4.11). Then for
every 0 < λ < Λ◦ there exists a solution to problem (5.1).

Proof. In order to apply the mountain-pass principle, we have to show
that

max
t≥0

Jλ,2(tUε) <
S
N
2

2NQ
N−2

2
m

.

This relation is a consequence of asymptotic estimates (4.10) and assumption
(4.11). 2

We now consider the case 2 < q < 2∗∗.

Proposition 5.4. Let 2 < q < 2∗∗ and λ > 0. Then there exist constants
ρ > 0 and κ > 0 such that

Jλ,q(u) ≥ κ for ‖u‖ = ρ. (5.4)

Moreover the (PS)c condition holds for

c < min
(

S
N
2

NQ
N−2

2
M

,
S
N
2

2NQ
N−2

2
m

)
. (5.5)
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Proof. By the Sobolev embedding theorems, we obtain

Jλ,q(u) ≥ 1
2

∫
Ω

(
|∇u|2 + u2

)
dx− S

− 2∗
2

1

2∗

(∫
Ω

(
|∇u|2 + u2

)
dx

) 2∗
2

− λS
− q

2
q

q

(∫
Ω

(
|∇u|2 + u2

)
dx

) q
2

.

Taking ρ > 0 small enough (5.4) follows. Let {un} ⊂ H1(Ω) be a (PS)c
sequence with c satisfying (5.5). We have

c+ o(1) + o(‖un‖) = Jλ,q(un)− 1
2
〈J ′λ,q(un), un〉 =

1
N

∫
Ω
Q(x)|un|2

∗
dx

+
(1

2
− 1
q

)
λ

∫
∂Ω
|un|qdSx.

Since 2 < q < 2∗∗, we see that∫
Ω
Q(x)|un|2

∗
dx+

∫
∂Ω
|un|q dSx ≤ C(1 + ‖un‖)

for some constant C > 0 independent of n. On the other hand we have

Jλ,q(un)− 1
2∗
〈J ′λ,q(un), un〉 =

1
N

∫
Ω

(
|∇un|2+u2

n

)
dx+

( 1
2∗
−1
q

)
λ

∫
∂Ω
|un|q dSx.

From the last two relations it is easy to deduce that {un} is bounded in
H1(Ω). Finally, the (PS)c condition follows from the concentration - com-
pactness principle. 2

Theorem 5.2. Let N ≥ 5, 2 < q < 2∗∗, H(0) > 0, 0 ∈ ∂Ω, Qm = Q(0) and
QM ≤ 2

2
N−2Qm. Moreover, assume that Q satisfies (4.11). Then problem

(5.1) has a solution for every λ > 0.

Proof. Using the asymptotic estimates (4.10) one can show that

max
t≥0

Jλ,q(tUε) <
S
N
2

2NQ
N−2

2
m

.

The result follows from Proposition 5.4. 2

We now consider the case QM > 2
2

N−2Qm.

Theorem 5.3. Let QM > 2
2

N−2Qm. Suppose that

|Ω|
N
2

(
QM∫

ΩQ(x) dx

)N−2
2

< S
N
2 , (5.6)

then problem (5.1) admits a solution for every λ > 0.
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Proof. To apply Proposition 5.4 we show that

max
t≥0

Jλ,q(t) <
S
N
2

NQ
N−2

2
M

. (5.7)

We have

Jλ,q(t) ≤
t2

2
|Ω| − t2

∗

2∗

∫
Ω
Q(x) dx := f(t)

and

max
t≥0

f(t) =
1
N

|Ω|
2∗

2∗−2(∫
ΩQ(x) dx

) 2
2∗−2

.

Assumption (5.6) guarantees (5.7). 2

One can also use the estimate

Jλ,q(t) ≤
t2

2
|Ω| − tq

q
λ|∂Ω|

to derive (5.7). However, this leads to some restriction of values of a param-
eter λ.

6. Generalizations

In this section we consider the problem{
−∆u = Q(x)u2∗−1 in Ω,
∂u
∂ν = λuq−1 on ∂Ω, u > 0 on Ω.

(6.1)

A function u ∈ H1(Ω) is a solution of problem (6.1) if∫
Ω
∇u∇φdx =

∫
Ω
Q(x)u2∗−1φdx+ λ

∫
∂Ω
uq−1φdSx (6.2)

for every φ ∈ H1(Ω). First, we observe that if Q(x) > 0 on Ω, then problem
(6.1) does not have a solution. Assuming that u is a solution of (6.1) and
testing (6.2) with φ = 1, we obtain∫

Ω
Q(x)U2∗−1 dx+ λ

∫
∂Ω
uq−1 dSx = 0.

Since u > 0 on Ω, we obtain a contradiction. Therefore, we assume

(Q)
∫

ΩQ(x) dx < 0 and Q+(x) 6= 0, Q−(x) 6= 0.
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By Jλ we denote the variational functional

Jλ(u) =
1
2

∫
Ω
|∇u|2 dx− 1

2∗

∫
Ω
Q(x)|u|2∗ dx− λ

q

∫
∂Ω
|u|q dSx,

which is of class C1 on H1(Ω). We use a decomposition of H1(Ω)

H1(Ω) = V ⊕ R,

where
V = {v ∈ H1(Ω) |

∫
Ω
v dx = 0}.

Using this decomposition, we define an equivalent norm on H1(Ω) by

‖u‖2V =
∫

Ω
|∇u|2 dx+ t2, if u = v + t, v ∈ V, t ∈ R.

To show that Jλ has a mountain-pass geometry, we need the following qual-
itative statement (see [5])

(S) there exists a number η > 0 such that for each t ∈ R and v ∈ V the
inequality (∫

Ω
|∇v|2 dx

) 1
2

≤ η|t|

implies ∫
Ω
Q(x)|t+ v(x)|2∗ dx ≤ |t|

2∗

2

∫
Ω
Q(x) dx.

This follows from the continuity of the embedding of V into L2∗(Ω).

Proposition 6.1. Let 1 < q < 2∗∗ and suppose that (Q) holds. Then there
exist β > 0, ρ > 0 and λ∗ > 0, such that for every 0 < λ < λ∗, we have

Jλ(u) ≥ β for ‖u‖ = ρ and inf
‖u‖≤ρ

Jλ(u) < 0.

Proof. We distinguish two cases: (i) ‖∇v‖2 ≤ η|t| and (ii) ‖∇v‖2 > η|t|,
where η > 0 is a constant from (S). If ‖∇v‖2 ≤ η|t| and ‖∇v‖22 + t2 = ρ2,
then t2 ≥ ρ2

1+η2 . By (S) we obtain∫
Ω
Q(x)|t+ v(x)|2∗ dx ≤ |t|

2∗

2

∫
Ω
Q(x) dx = −|t|2∗α,

where α = −1
2

∫
ΩQ(x) dx > 0. Hence we have the following estimate of Jλ

from below

Jλ(u) ≥ α

2∗
|t|2∗ − λ

q

∫
Ω
|u|q dSx ≥

αρ2∗

2∗
(
1 + η2

) 2∗
2

− λ

q

∫
∂Ω
|u|q dSx. (6.3)
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In case (ii) we have

‖u‖V ≤ ‖∇v‖2
(

1 +
1
η2

) 1
2

.

By the Sobolev inequality we have

|
∫

Ω
Q(x)|u|2∗ dx| ≤ C1‖u‖2

∗
V ≤ C1‖∇v‖2

∗
2

(
1 +

1
η2

) 2∗
2

for some constant C1 > 0. Hence

Jλ(u) ≥ 1
2
‖∇v‖22 −

C1

2∗
‖∇v‖2∗2

(
1 +

1
η2

) 2∗
2

− λ

q

∫
∂Ω
|u|q dSx.

Taking ‖∇v‖2 ≤ ρ small enough, we derive from this inequality the following
estimate from below:

Jλ(u) ≥ 1
4
‖∇v‖22 −

λ

q

∫
∂Ω
|u|q dSx.

If ‖u‖V = ρ, then ρ ≤ ‖∇v‖2
(

1+η2
) 1

2

η . Therefore,

Jλ(u) ≥ η2ρ2

4
(
1 + η2

) − λ

q

∫
∂Ω
|u| dSx. (6.4)

From (6.3) and (6.4) we derive

Jλ(u) ≥ min
(

η2ρ2

4
(
1 + η2

) , αρ2∗

2∗(1 + η2
) 2∗

2

)
− λ

q

∫
∂Ω
|u|q dSx.

Applying the Sobolev trace embedding theorem, we get

Jλ(u) ≥ min
(

η2ρ2

4
(
1 + η2

) , αρ2∗

2∗(1 + η2
) 2∗

2

)
− λC2‖u‖qV

for some constant C2 > 0. Taking λ∗ > 0 small enough the first assertion
follows. Since 1 < q < 2∗∗ < 2∗ we have

Jλ(u) = −|t|
2∗

2∗

∫
Ω
Q(x) dx− λ

q
|t|q|∂Ω| < 0

for t sufficiently small. Hence inf‖u‖≤ρ Jλ(u) < 0. 2

Repeating the proof of Theorem 3.1 we get

Theorem 6.1. Let 1 < q < 2∗∗. Then for every 0 < λ < λ∗ there exists a
solution u of problem (6.1) satisfying Jλ(u) < 0.
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Let us denote by uλ a solution of problem (6.1) from Theorem 6.1.

Proposition 6.2. Let 1 < q < 2. Suppose that Q(x) > 0 somewhere on
∂Ω. If u = 0 and u = uλ are the unique critical points of Jλ, then the (PS)c
condition holds for

c < c̄ = Jλ(uλ) + min
(

S
N
2

NQ
N−2

2
M

,
S
N
2

2NQ
N−2

2
m

)
.

The proof is analogous to that of Proposition 4.1 and is omitted.

From this we can derive the first existence result for problem (6.1).

Theorem 6.2. Let N ≥ 5, 1 < q < 2 and QM ≤ 2
2

N−2Qm. Suppose that
Qm = Q(0), 0 ∈ ∂Ω, H(0) > 0 and that assumption (4.11) holds. Then
problem (6.1) admits a solution for every 0 < λ < λ∗.

We now consider the case QM > 2
2

N−2Qm. In this case

c̄ = Jλ(uλ) +
S
N
2

NQ
N−2

2
M

.

Let QM = Q(xM ), xM ∈ Ω.

Theorem 6.3. Let 1 < q < 2 and QM > 2
2

N−2Qm. Suppose that

|Q(x)−Q(xM )| = o
(
|x− xM |

N−2
2
)

(6.5)

for x near xM . Then problem (6.1) admits a second solution for every 0 <
λ < λ∗.

Proof. A second solution will be obtained through the mountain-pass
principle. Let φ ∈ C1(RN ) be such that φ(x) = 1 on B(xM , r2), φ(x) = 0 on
RN − B(xM , r) and 0 ≤ φ(x) ≤ 1, B(xM , r) ⊂ {x ∈ Ω |Q(x) > 0}. We set
Wε = φUε,xM . It is sufficient to show that

max
t≥0

Jλ(uλ + tWε) ≤ Jλ(uλ) +
S
N
2

NQ
N−2

2
M

. (6.6)
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We have, as in the proof of Proposition 4.2,

Jλ(uλ + tWε) ≤ Jλ(uλ) +
t2

2

∫
Ω
|∇Wε|2 dx+

1
2∗

∫
Ω
Q+(x)u2∗

λ dx

− 1
2∗

∫
Ω
Q+(x)

(
uλ + tWε

)2∗
dx+ t

∫
Ω
Q+(x)u2∗−1

λ Wε dx

≤ Jλ(uλ) +
t2

2

∫
Ω
|∇Wε|2 dx−

t2
∗

2∗

∫
Ω
Q(x)W 2∗

ε dx

− t2
∗−1

∫
Ω
Q(x)W 2∗−1

ε uλ dx

+ Ct
N+1
N−2

∫
Ω
Q(x)u

N−1
N−2

λ W
N+1
N−2
ε dx

= Jλ(uλ) + Ψε(t).

Let Ψε(tε) = maxt≥0 Ψε(t). Repeating the proof of Proposition 4.2 we can
show that there exist constants 0 < T1 < T2 such that T1 ≤ tε ≤ T2. Since
uλ > 0 on Ω, there exists a constant α > 0 such that∫

Ω
Q(x)uλW 2∗−1

ε dx ≥ αε
N−2

2 .

Hence

Jλ(uλ + tWε) ≤ Jλ(uλ) +

(∫
Ω |∇Wε|2 dx

)N
2

N

(∫
ΩQ(x)W 2∗

ε dx

)N−2
2

+ CT
N−1

2
2 ε

N−1
2

− αT 2∗−1
1 ε

N−2
2 .

Assumption (6.5) yields the following expansion of
∫

ΩQ(x)W 2∗
ε dx:∫

Ω
Q(x)W 2∗

ε dx = QM

∫
Ω
W 2∗
ε dx+ o

(
ε
N−2

2
)
.

We also have∫
Ω
|∇Wε|2 dx = S

N
2 +O

(
εN−2

)
and

∫
Ω
W 2∗
ε dx = S

N
2 +O

(
εN
)
.

Hence

max
t≥0

Jλ(uλ + tWε) < Jλ(uλ) +
S
N
2

NQ
N−2

2
M

for small ε > 0. 2
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[19] J. Garćıa-Melián, J.D. Rossi and J.C. Sabina de Lis, Existence and uniqueness
of positive solutions to elliptic problems with sublinear mixed boundary conditions,
Commun. Contemp. Math., 11 (2009), 585-613.



On the Neumann problem with a nonlinear boundary condition 51
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