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1. Introduction

In this paper we study the differential inclusion

x′ ∈ A(t)x+ F (t, x,H(t, x)), a.e. (I) (1.1)

with boundary conditions of the form

Mx(0) +Nx(1) = η, (1.2)

where I = [0, 1], F (., ., .) : I × Rn × Rn → P(Rn), H(., .) : I × Rn → P(Rn)
are set-valued maps, A(.) is a continuous (n × n) matrix function, M and
N are (n× n) constant real matrices and η ∈ Rn.

When F does not depend on the last variable (1.1) reduces to

x′ ∈ A(t)x+ F (t, x), a.e. (I). (1.3)

Existence of solutions of problem (1.3)-(1.2) may be found in [1,6] etc. In all
these papers the set-valued map F is assumed to be at least closed-valued.
Such an assumption is quite natural in order to obtain good properties of
the solution set, but it is interesting to investigate the problem when the
right-hand side of the multivalued equation may have nonclosed values.

Following the approach in [8] we consider the problem (1.1)-(1.2), where
F and H are closed-valued multifunctions Lipschitzian with respect to the
second variable and F is contractive in the third variable. Obviously, the
right-hand side of the differential inclusion in (1.1) is in general neither
convex nor closed. We prove the arcwise connectedness of the solution set
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to (1.1)-(1.2). The main tool is a result (see [7]) concerning the arcwise
connectedness of the fixed point set of a class of nonconvex nonclosed set-
valued contractions. We note that this idea was already used for similar
results for other classes of differential inclusions (see [2,3,4,5]).

The paper is organized as follows: in Section 2 we recall some preliminary
results that we use in the sequel and in Section 3 we prove our main result.

2. Preliminaries

Let Z be a metric space with the distance dZ and let 2Z be the fam-
ily of all nonempty closed subsets of Z. For a ∈ Z and A,B ∈ 2Z set
dZ(a,B) = infb∈B dZ(a, b) and d∗Z(A,B) = supa∈A dZ(a,B). Denote by DZ

the Pompeiu-Hausdorff generalized metric on 2Z defined by

DZ(A,B) = max{d∗Z(A,B), d∗Z(B,A)}, A,B ∈ 2Z .

In what follows, when the product Z = Z1 × Z2 of metric spaces Zi, i =
1, 2, is considered, it is assumed that Z is equipped with the distance
dZ((z1, z2), (z′1, z

′
2)) =

∑2
i=1 dZi(zi, z

′
i).

Let X be a nonempty set and let F : X → 2Z be a set-valued map from
X to Z. The range of F is the set F (X) = ∪x∈XF (x). Let (X,F) be a
measurable space. The multifunction F : X → 2Z is called measurable if
F−1(Ω) ∈ F for any open set Ω ⊂ Z, where F−1(Ω) = {x ∈ X |F (x) ∩ Ω 6=
∅}. Let (X, dX) be a metric space. The multifunction F is called Hausdorff
continuous if for any x0 ∈ X and every ε > 0 there exists δ > 0 such that
x ∈ X, dX(x, x0) < δ implies DZ(F (x), F (x0)) < ε.

Let (T,F , µ) be a finite, positive, nonatomic measure space and let (X,
|.|X) be a Banach space. We denote by L1(T,X) the Banach space of all
(equivalence classes of) Bochner integrable functions u : T → X endowed
with the norm

|u|L1(T,X) =
∫
T
|u(t)|Xdµ.

A nonempty set K ⊂ L1(T,X) is called decomposable if, for every u, v ∈
K and every A ∈ F , one has

χA.u+ χT\A.v ∈ K,

where χB, B ∈ F indicates the characteristic function of B.
A metric space Z is called an absolute retract if, for any metric space X

and any nonempty closed set X0 ⊂ X, every continuous function g : X0 → Z
has a continuous extension g : X → Z over X. It is obvious that every
continuous image of an absolute retract is an arcwise connected space.

In what follows we recall some preliminary results that are the main
tools in the proof of our result.
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Let (T,F , µ) be a finite, positive, nonatomic measure space, S a separa-
ble Banach space and let (X, |.|X) be a real Banach space. To simplify the
notation we write E in place of L1(T,X).

Lemma 2.1. (see [8]) Assume that φ : S × E → 2E and ψ : S × E ×
E → 2E are Hausdorff continuous multifunctions with nonempty, closed,
decomposable values, satisfying the following conditions.

(a) There exists L ∈ [0, 1) such that, for every s ∈ S and every u, u′ ∈ E,

DE(φ(s, u), φ(s, u′)) ≤ L|u− u′|E .

(b) There exists M ∈ [0, 1) such that L + M < 1 and for every s ∈ S
and every (u, v), (u′, v′) ∈ E × E,

DE(ψ(s, u, v), ψ(s, u′, v′)) ≤M(|u− u′|E + |v − v′|E).

Set Fix(Γ(s, .)) = {u ∈ E |u ∈ Γ(s, u)}, where Γ(s, u) = ψ(s, u, φ(s, u)),
(s, u) ∈ S × E. Then the following assertions hold.

(i) For every s ∈ S the set Fix(Γ(s, .)) is nonempty and arcwise con-
nected.

(ii) For any si ∈ S, and any ui ∈ Fix(Γ(s, .)), i = 1, ..., p, there exists a
continuous function γ : S → E such that γ(s) ∈ Fix(Γ(s, .)) for all s ∈ S
and γ(si) = ui, i = 1, ..., p.

Lemma 2.2. (see [8]) Let U : T → 2X and V : T × X → 2X be two
nonempty closed-valued multifunctions satisfying the following conditions.

(a) U is measurable and there exists r ∈ L1(T ) such that DX(U(t), {0}) ≤
r(t) for almost all t ∈ T .

(b) The multifunction t 7→ V (t, x) is measurable for every x ∈ X.
(c) The multifunction x 7→ V (t, x) is Hausdorff continuous for all t ∈ T .
Let v : T → X be a measurable selection from t→ V (t, U(t)).
Then there exists a selection u ∈ L1(T,X) of U(.) such that v(t) ∈

V (t, u(t)), t ∈ T .

Let I = [0, 1], let |x| be the norm of x ∈ Rn and ||A|| be the norm of
any matrix A. As usual, we denote by C(I,Rn) the Banach space of all
continuous functions from I to Rn with the norm ||x(.)||C = supt∈I |x(t)|,
AC(I,Rn) is the space of absolutely continuous functions from I to Rn and
L1(I,Rn) is the Banach space of integrable functions u(.) : I → Rn endowed
with the norm ||u(.)||1 =

∫ 1
0 |u(t)|dt.

A function x(.) ∈ AC(I,Rn) is called a solution of problem (1.3)-(1.2) if
there exists a function f(.) ∈ L1(I,Rn) with f(t) ∈ F (t, x(t)) a.e. (I) such
that

x′(t) = A(t)x(t) + f(t), a.e. (0, 1), Mx(0) +Nx(1) = η. (2.1)
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Let Φ(.) be a fundamental matrix solution of the differential equations
x′ = A(t)x that satisfy Φ(0) = I, where I is the (n× n) identity matrix.

The next result is well known (e.g. [1]).

Lemma 2.3. (see [1]) If f(.) : [0, 1] → Rn is an integrable function, then
the problem

x′(t) = A(t)x(t) + f(t), a.e. (0, 1), Mx(0) +Nx(1) = 0 (2.2)

has a unique solution provided det(M +NΦ(1)) 6= 0. This solution is given
by

x(t) =
∫ 1

0
G(t, s)f(s)ds,

with G(., .) the Green function associated to problem (2.2). Namely,

G(t, s) =
{

Φ(t)J(s) if 0 ≤ t ≤ s,
Φ(t)Φ(s)−1 + Φ(t)J(s) if s ≤ t ≤ 1,

(2.3)

where J(t) = −(M +NΦ(1))−1NΦ(1)Φ(t)−1.

If we consider the problem with nonhomogeneous boundary conditions,
i.e. problem (2.1), then it is easy to verify that its solution is given by

x(t) = Φ(t)(M +NΦ(1))−1η +
∫ 1

0
G(t, s)f(s)ds. (2.4)

In the sequel we assume that A(.) is a continuous (n×n) matrix function,
M and N are (n×n) constant real matrices such that det(M +NΦ(1)) 6= 0.

In order to study problem (1.1)-(1.2) we introduce the following hypoth-
esis on F .

Hypothesis 2.1. Let F : I × (Rn)2 → 2Rn
and H : I × Rn → 2Rn

be
two set-valued maps with nonempty closed values, satisfying the following
assumptions.

(i) The set-valued maps t → F (t, u, v) and t → H(t, u) are measurable
for all u, v ∈ Rn.

(ii) There exists l ∈ L1(I,R+) such that, for every u, u′ ∈ Rn,

D(H(t, u), H(t, u′)) ≤ l(t)|u− u′| a.e.(I).

(iii) There exist m ∈ L1(I,R+) and θ ∈ [0, 1) such that, for every u, v, u′,
v′ ∈ Rn,

D(F (t, u, v), F (t, u′, v′)) ≤ m(t)|u− u′|+ θ|v − v′| a.e.(I).

(iv) There exist f, g ∈ L1(I,R+) such that

d(0, F (t, 0, 0)) ≤ f(t), d(0, H(t, 0)) ≤ g(t) a.e.(I).

For η ∈ Rn we denote by S(η) the solution set of (1.1)-(1.2).
In what follows N(t) := max{l(t),m(t)}, t ∈ I.
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3. The main result

Even if the multifunction from the right-hand side of (1.1) has, in gen-
eral, nonclosed nonconvex values, the solution set S(η) has some meaningful
properties, stated in Theorem 3.1 below.

Theorem 3.1. Assume that Hypothesis 2.1 is satisfied and that one has
2 supt,s∈I ||G(t, s)||

∫ 1
0 N(s)ds+ θ < 1. Then the following assertions hold.

(i) For every η ∈ Rn, the solution set S(η) of (1.1)-(1.2) is nonempty
and arcwise connected in the space C(I,Rn).

(ii) For any ηi ∈ Rn and any ui ∈ S(ηi), i = 1, ..., p, there exists a
continuous function s : Rn → C(I,Rn) such that s(η) ∈ S(η) for any η ∈ Rn

and s(ηi) = ui, i = 1, ..., p.
(iii) The set S = ∪η∈RnS(η) is arcwise connected in C(I,Rn).

Proof. (i) For η ∈ Rn and u ∈ L1(I,Rn), set

Pη(t) := Φ(t)(M +NΦ(1))−1η, t ∈ I,

uη(t) = Pη(t) +
∫ 1

0
G(t, s)u(s)ds, t ∈ I.

We prove that the multifunctions φ : Rn × L1(I,Rn) → 2L
1(I,Rn) and

ψ : Rn × L1(I,Rn)× L1(I,Rn)→ 2L
1(I,Rn) given by

φ(η, u) = {v ∈ L1(I,Rn) | v(t) ∈ H(t, uη(t)) a.e. (I)},

ψ(η, u, v) = {w ∈ L1(I,Rn) |w(t) ∈ F (t, uη(t), v(t)) a.e. (I)},

η ∈ Rn, u, v ∈ L1(I,Rn) satisfy the hypotheses of Lemma 2.1.
Since uη(.) is measurable and H satisfies Hypothesis 2.1 (i) and (ii), the

multifunction t → H(t, uη(t)) is measurable and nonempty closed-valued,
hence it has a measurable selection. Therefore due to Hypothesis 2.1 (iv),
the set φ(η, u) is nonempty. The fact that the set φ(η, u) is closed and
decomposable follows by simple computation. In the same way we obtain
that ψ(η, u, v) is a nonempty closed decomposable set.

Pick (η, u), (η1, u1) ∈ Rn × L1(I,Rn) and choose v ∈ φ(η, u). For each
ε > 0 there exists v1 ∈ φ(η1, u1) such that, for every t ∈ I, one has

|v(t)− v1(t)| ≤ D(H(t, uη(t)), H(t, uη1
(t))) + ε ≤ N(t)[|Pη(t)− Pη1

(t)|

+
∫ 1

0
||G(t, s)||.|u(s)−u1(s)|ds]+ε ≤ N(t)[sup

t∈I
|Φ(t)(M+NΦ(1))−1(η−η1)|

+ sup
t,s∈I
||G(t, s)||.||u− u1||1] + ε.
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Hence there exists M0 ≥ 0 such that

||v − v1||1 ≤M0|η − η1|.
∫ 1

0
N(t)dt+ sup

t,s∈I
||G(t, s)||

∫ 1

0
N(t)dt||u− u1||1 + ε

for any ε > 0.
This implies

dL1(I,Rn)(v, φ(η1, u1)) ≤

M0|η − η1|.
∫ 1

0
N(t)dt+ sup

t,s∈I
||G(t, s)||

∫ 1

0
N(t)dt||u− u1||1

for all v ∈ φ(η, u). Therefore,

d∗L1(I,Rn)(φ(η, u), φ(η1, u1)) ≤

M0|η − η1|.
∫ 1

0
N(t)dt+ sup

t,s∈I
||G(t, s)||

∫ 1

0
N(t)dt||u− u1||1.

Consequently,
DL1(I,Rn)(φ(η, u), φ(η1, u1)) ≤

M0|η − η1|.
∫ 1

0
N(t)dt+ sup

t,s∈I
||G(t, s)||

∫ 1

0
N(t)dt||u− u1||1,

which shows that φ is Hausdorff continuous and satisfies the assumptions of
Lemma 2.1.

Pick (η, u, v), (η1, u1, v1) ∈ Rn × L1(I,Rn) × L1(I,Rn) and choose w ∈
ψ(η, u, v). Then, as before, for each ε > 0 there exists w1 ∈ ψ(η1, u1, v1)
such that, for every t ∈ I, we have:

|w(t)− w1(t)| ≤ D(F (t, uη(t), v(t)), F (t, uη1
(t), v1(t))) + ε ≤ N(t)|uη(t)−

uη1
(t)|+ θ|v(t)− v1(t)|+ ε ≤ N(t)[|Pη(t)− Pη1

(t)|+
∫ 1

0
||G(t, s)||.|u(s)−

u1(s)|ds] + θ|v(t)− v1(t)|+ ε ≤ N(t)[M0|η − η1|+ sup
t,s∈I
||G(t, s)||.||u− u1||1]

+θ|v(t)− v1(t)|+ ε.

Hence

||w − w1||1 ≤M0|η − η1|.
∫ 1

0
N(t)dt+ sup

t,s∈I
||G(t, s)||

∫ 1

0
N(t)dt||u− u1||1

+θ||v − v1||1 + ε ≤M0|η − η1|.
∫ 1

0
N(t)dt+

(sup
t,s∈I
||G(t, s)||

∫ 1

0
N(t)dt+ θ)dL1(I,Rn)×L1(I,Rn)((u, v), (u1, v1)) + ε.
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As above, we deduce that

DL1(I,Rn)(ψ(η, u, v), ψ(η1, u1, v1)) ≤M0|η − η1|.
∫ 1

0
N(t)dt

+(sup
t,s∈I
||G(t, s)||

∫ 1

0
N(t)dt+ θ)dL1(I,Rn)×L1(I,Rn)((u, v), (u1, v1)),

namely, the multifunction ψ is Hausdorff continuous and satisfies the hy-
pothesis of Lemma 2.1.

Define Γ(η, u) = ψ(η, u, φ(η, u)), (η, u) ∈ Rn × L1(I,Rn). According to
Lemma 2.1, the set Fix(Γ(η, .)) = {u ∈ L1(I,Rn) |u ∈ Γ(η, u)} is nonempty
and arcwise connected in L1(I,Rn). Moreover, for fixed ηi ∈ Rn and vi ∈
Fix(Γ(ηi, .)), i = 1, ..., p, there exists a continuous function γ : Rn → L1(I,
Rn) such that

γ(η) ∈ Fix(Γ(η, .)), for any η ∈ Rn, (3.1)

γ(ηi) = vi, i = 1, ..., p. (3.2)

We shall prove that

Fix(Γ(η, .)) = {u ∈ L1(I,Rn) |u(t) ∈ F (t, uη(t), H(t, uη(t))) a.e. (I)}.
(3.3)

Denote by A(η) the right-hand side of (3.3). If u ∈ Fix(Γ(η, .)), then
there is v ∈ φ(η, v) such that u ∈ ψ(η, u, v). Therefore, v(t) ∈ H(t, uη(t))
and

u(t) ∈ F (t, uη(t), v(t)) ⊂ F (t, uη(t), H(t, uη(t))) a.e. (I),

so that Fix(Γ(η, .)) ⊂ A(η).
Let now u ∈ A(η). By Lemma 2.2, there exists a selection v ∈ L1(I,Rn)

of the multifunction t→ H(t, uη(t))) satisfying

u(t) ∈ F (t, uη(t), v(t)) a.e. (I).

Hence, v ∈ φ(η, v), u ∈ ψ(η, u, v) and thus u ∈ Γ(η, u), which completes the
proof of (3.3).

We next note that the function T : L1(I,Rn)→ C(I,Rn), given by

T (u)(t) :=
∫ 1

0
G(t, s)u(s)ds, t ∈ I

is continuous and one has

S(η) = Pη(.) + T (Fix(Γ(η, .))), η ∈ Rn. (3.4)

Since Fix(Γ(η, .)) is nonempty and arcwise connected in L1(I,Rn), the set
S(η) has the same properties in C(I,Rn).
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(ii) Let ηi ∈ Rn and let ui ∈ S(ηi), i = 1, ..., p, be fixed. By (3.4) there
exists vi ∈ Fix(Γ(ηi, .)) such that

ui = Pηi
(.) + T (vi), i = 1, ..., p.

If γ : Rn → L1(I,Rn) is a continuous function satisfying (3.1) and (3.2), we
define, for every η ∈ Rn,

s(η) = Pη(.) + T (γ(η)).

Obviously, the function s : Rn → C(I,Rn) is continuous, s(η) ∈ S(η) for all
η ∈ Rn, and

s(ηi) = Pηi
(.) + T (γ(ηi)) = Pηi

(.) + T (vi) = ui, i = 1, ..., p.

(iii) Let u1, u2 ∈ S = ∪η∈RnS(η) and choose ηi ∈ Rn, i = 1, 2 such that
ui ∈ S(ηi), i = 1, 2. From the conclusion of 2) we deduce the existence of
a continuous function s : Rn → C(I,Rn) satisfying s(ηi) = ui, i = 1, 2 and
s(η) ∈ S(η), η ∈ Rn. Let h : [0, 1] → Rn be a continuous mapping such
that h(0) = η1 and h(1) = η2. Then the function s ◦ h : [0, 1]→ C(I,Rn) is
continuous and verifies

s ◦ h(0) = u1, s ◦ h(1) = u2, s ◦ h(τ) ∈ S(h(τ)) ⊂ S, τ ∈ [0, 1].
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