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Abstract - We present in this paper a new inverse method for the study of
the seepage from symmetrical earthen open channels. We map the half-strip
from the complex potential domain onto the unit half-disk from an auxil-
iary ¢ - plane. We introduce Levi-Civitd’s function whose imaginary part
vanishes on the diameter [—1,1] of the half-disk by virtue of the boundary
conditions imposed on the free lines. Then we give integral representations
of the complex potential, velocity field, free phreatic lines and contour of the
channel by means of o, the real part of Levi-Civitd’s function on the unit
half-circle. For various values of the Fourier coefficients of o we calculate
numerically the contour of the channel, the phreatic lines, the seepage loss,
the velocity field, the streamlines and the equipotential lines.
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1. Introduction

The free surface seepage may be encountered in many engineering problems
involving the flow of water through a porous medium, such as the perme-
able dam problem [9], [10], [12], irrigation and drainage problems [3], [4] or
the seepage from earthen channels [5], [11], [14], [15], [18], [21], etc. Math-
ematically, these problems reduce to boundary values problems for partial
differential equations of elliptic type in domains with partially unknown
boundaries that are found using specified boundary conditions. One of the
most powerful mathematical techniques utilized for studying the free bound-
ary seepage problems is the theory of variational inequalities (see for example
Oden and Kikuchi [18], Chipot [8] and Chipot and Lyaghfouri [9], [10]). Us-
ing this technique and the finite element method, Oden and Kikuchi [18§]
solved numerically some problems involving fluid seepage with free bound-
aries in porous media.

In the case of homogeneous isotropic porous media, employing the theory
of complex holomorphic functions or the theory of real harmonic functions,
Carabineanu [3], Carabineanu and Hontus [4], France et all. [12] and oth-
ers utilized the boundary element method for solving numerically some 2d

3
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problems concerning the irrigation, drainage or seepage through permeable
dams.

Besides the numerical methods, the analytical ones are necessary not
only to substantiate and test numerical algorithms but also to gain a deeper
understanding of the underlying physics. A valuable survey on the analytical
studies of the problems arising in conection with the free boundary seepage
is the paper of Ilyinsky, Kacimov and Yakimov [15].

In the case of the 2d seepage from soil channels into a homogeneous
isotropic porous medium, one knows the complex potential domain (a half-
strip), a part of the boundary of the physical flow domain (the contour of
the channel), a part of the boundary of the Zhukovskii complex domain
(the free lines) and a part of the boundary of the complex velocity domain
(the free lines). This fact suggests the elaboration of various variants of
the inverse method. The inverse method does not solve the direct seep-
age problem: given the contour of the channel, calculate the corresponding
seepage loss, but Kacimov’s comparison theorem [16], which states that for
any arbitrary channel, the seepage loss is bounded from below and above by
the seepage discharges from an arbitrary inscribed channel and an arbitrary
comprising channel respectively, is a valuable tool for studying the direct
problem by means of the inverse method. To this aim, it is important to
have a great number of contours of channel obtained by means of the inverse
methods. We shall review therefore some papers where various alternatives
of the inverse method for the seepage problem from soil channels have been
employed: Kozeny (see [20], [13]) studied the seepage from a curved channel
using Zhukovskii’s function and found that the resultant channel has tro-
choid form. In [1], Anakhaev obtained a solution for curvilinear watercourses
by representing the watercourse profiles in the Zhukovskii plane by means of
the equation of a family of lemniscates. Other types of watercourses with dif-
ferent relative widths where studied by Anakhaev in [2]. For the particular
case of a circular base of the watercourse profile, the solution of Anakhaev
coincides with the known exact solutions derived by Vedernikov [22] and
Pavlovskii [19]. Chahar utilized in [6] the inverse method to obtain an exact
solution for seepage from a curved channel whose boundary maps along a
circle onto the complex velocity plane. The channel shape is an approxi-
mate semiellipse with the top width as the major axis and twice the water
depth as the minor axis. In a subsequent paper dedicated to the same class
of curvilinear bottomed channels Chahar [7] discusses the optimal section
properties from the least area and minimum seepage loss points of view.
Kacimov and Obsonov [17] used the inverse method to find the shape of
a soil channel of constant hydraulic gradient. In [17] and in [14] the au-
thors utilized an inverse method where the shape of the unknown channel
is searched as part of the solution.

In the present paper, we present a new variant of the complex velocity-



FREE BOUNDARY SEEPAGE FROM OPEN EARTHEN CHANNELS 5

complex potential pair, based on Levi-Civita’s function. We consider the
conformal mapping f (¢) of the unit half-disk onto the half-strip from the
complex potential plane. Instead of searching the conformal mapping of
the half-strip from the complex potential plane onto the complex veloc-
ity domain we shall look for Levi-Civita’s function w ({). The radii (—1,0)
and (0,1) of the unit half-disk correspond through the conformal mapping
2 (¢) to the free (phreatic) lines from the flow domain. On these radii, the
imaginary part of w (¢) vanishes by virtue of the conditions imposed on the
free lines. According to Schwarz’s principle of symmetry, we may extend
the domain of definition of w (¢) to the whole unit disk and we may em-
ploy Schwarz-Villat’s integral formula for representing w ({) by means of
o (s) = Real w (exp (is)), s € [0,7].

At the first glance, because of the integral representations that we have
to employ, the inverse method proposed herein seems to be more compli-
cated than the classical inverse method involving the conformal mapping of
the half-strip onto the complex velocity domain. However, in the end, we
have to give only the expression of the function o (s) (in fact we shall give
the coefficients of the Fourier series of o) in order to construct the channel
profile and solve the corresponding free boundary seepage problem. In Sec-
tion 6, we present some calculated channel profiles and the corresponding
phreatic lines, stream lines, equipotential lines and seepage losses. The inte-
grals occurring in the corresponding integral representations are calculated
numerically. In fact, we have conceived a Matlab code. The input data
consist of the coefficients of the Fourier series of o (s). The output consists
of the seepage loss and phreatic lines, streamlines and equipotential lines
calculated in the nodes of a mesh from the flow domain. In some particular
cases we compare the numerical results with analytical ones and we notice
a very good agreement.

2. The free boundary value problem

From the equation of continuity

divv =0 (2.1)
and Darcy’s law for a homogeneous isotropic poros medium
v=gradp, ¢ = —k <p + y> + const., (2.2)
Py
we deduce that
Ap = 0. (2.3)

Here ¢ is the potential of the velocity, v = (u,v) is the velocity, p - the
pressure and p - the density of the fluid, k is the constant filtration coeffi-
cient (hydraulic conductivity), g is the gravity constant and (z,y) are the
cartesian coordinates.
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Let ¢ (the stream function) be the harmonic conjugate of . For z =
x+iy the analytic function f (z) = ¢ (z,y)+iv (x,y) is the complex potential

and i o o
_99 oY _
= O +Z8x w, . (2.4)
where
w=u—1iv (2.5)

is the complex velocity

Now we are going to establish the boundary conditions.

We consider a soil channel whose profile is a curve which has the following
equation:
(2.6)

b) ¢ ©)

Figure 1: a) Flow domain in the porous medium. b) Half-strip in the plane
of the complex potential. ¢) Half-disk

Let y = 0 be the level of the water in the channel (figure 1.a)). Assuming
that there is no lining of the bottom AB of the channel, the pressure on AB
is

P = Patm — P3Y,

(Patm is the atmospheric pressure), whence we deduce that
¢ [ap=0. (2.7)

0
On AB the tangential velocity 8;)0 vanishes, hence we have
s

3

d
argw (z) |ap= arg(u — iv) = — arctan d—y + 5 (2.8)
T
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The free boundaries (phreatic lines) A; and A2 are streamlines, whence

Q Q
w ’/\1: 57 1/} ‘)\2: _57 (29)
where @ is the seepage loss (discharge). We study the seepage flow without
capilarity. Hence on the free phreatic lines the pressure has the constant

value pgtm. We have therefore

@+ ky [x\ur,= 0. (2.10)
Derivating along the tangential direction we get
0 0
8—? + ka—z U= 0, whence u? 4 v2 + kv |5,ux,= 0. (2.11)

3. Levi-Civita’s function

From (2.7) and (2.9) it follows that the image of the domain of motion in
the plane of the complex potential is a half-strip (figure 1.b)).
The function
Q Qi
f=—ghnety
is the conformal mapping of the unit half-disk from the ¢ - plane (figure 1.¢))
onto the half-strip from the f - plane. From (2.4) and (3.1) we deduce that
f, z and w may be regarded as functions of ¢ (z (¢) is the conformal mapping
of the unit half-disk from the ( - plane onto the flow domain from the z -
plane). The free lines A\; and Ay represent the image of the real diameter
¢=&+in, n=0, £ € [-1,0)U(0, 1] by the conformal mapping z (¢) and the
contour of the channel is the imagine of the half-circle { = exp (is), s € [0, 7]
by the same mapping.
We shall continue by introducing the auxiliary function w* () by means
of the relation

In(+—, (=&+in, In(—1+0i) = 7, In(—1 —0i) = —mi, (3.1)

w*(g):w(g)—f:u—i<v+§>. (3.2)

From (2.11) and (3.2) it results
Ve =l (@)= 2. e -1 U1, (33)

In the sequel we introduce Levi-Civitd's w (¢) = o (§,n) + i7 ({,n) by
means of the relation

. k :
W' (O) = Fexp (- (0)). (3.4
Since w* = V*exp (i argw*), from (3.4), we deduce that
2 *
o=—argw®, 7=In 4 . (3.5)

k
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4. Integral representations and conformal mappings
From (3.3) and (3.5) it follows that
7(£,0)=0, £€[-1,00U(0,1]. (4.1)

According to Schwarz’s principle of symmetry, the function w () can be
extended to the whole unit disk by means of the relation

w(¢) =w((), whence o (§,n) =0 (&,—n), 7(&n) =—7(5,—n). (4.2)

Applying Schwarz-Villat’s formula and (4.2) we get the integral representa-
tion

4 exp (is' 4 — 2
w(Q) 1/ J(S’)Mdslzl/o o(s) 1-¢ ds'

2 ). exp (is') — ¢ T 1—2Ccoss + (2 5
(4.3)
where we denoted o (s') = o (cos ', sin s") . We denote 7 (s') = 7 (cos ¢/, sin s') .
If the function o (s) satisfies a Holder condition, employing Plemelj’s
formula we obtain the following relation on the boundary of the unit disk

w(exp (is)) = o (s) — : /0 ﬂa (s) SiLds',

7r cos s — cos s’
whence, separating the imaginary parts, we get

1 sin s

T(s)=—— /Oma (s') ————ds'. (4.4)

T Ccos s — cos s’

The prime ”"” indicates the Cauchy principal value of the singular integral.
From the relation of .
i
2= = w* - 4.
L —w©=w©+5, (45)
it follows p
RS — (4.6)
w () +
2
Taking into account (3.1) and (3.4) we obtain
-2 d
dz = @ & (4.7)

k(i + exp (—iw (€))) ¢~

whence it results the following integral representation of the conformal map-
ping z (¢):
¢ 2Q d¢

+0 =260~ [ Firesw@) ¢ 48
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Considering in (4.7) ¢ = exp (is) we get
—2Qids
km (i 4 exp (—io (s) + 7 (s)))

on the profile of the channel. Separating in (4.9) the real parts and the
imaginary ones, we obtain

dx +idy =

(4.9)

dz _ 2Q 1 —sino (s)exp (7(s))
ds  kr1—2sino (s)exp (7 (s)) +exp (27 (s))’ (4.10)
@__@ coso (s)exp (7 (s))
ds  km1—2sino (s)exp (7 (s))+exp (27 (s))’ (4.11)
whence it follows
_ 2Q 1 —sino (s)exp (7 (s)) .
x(s)=L— ke o 1—2sino (s)exp(7(s)) +exp (27 (S))d , (4.12)
y(s) = —22 c0s 7 (s) exp (7 (5)) ds.  (4.13)

kr Jo 1—25ina(s)exp( (s)) +exp (27 (s))

5. Some properties of Levi-Civita’s function in the case of sym-
metrical channels

The functions o (s) and 7 (s) are not known, but we know the angle of the
velocity with the Ox -axis on the profile of the channel:

0(z) = —argw (x +1y) .

Denoting
0(s) =0(x(s)), V(s) = |w(exp(is))],
we obtain, from (3.2), the relation
V (s) exp (—if (5)) = V* (5) exp (—io (5)) + % (5.1)

Separating the real and imaginary parts we get
k
VcosO(s) =V*coso (s), Vsinf(s) = V*sino (s) — 2 (5.2)

whence, taking into account (3.5), it follows

cosf (s)
exp (7 (s))
Instead of relation (5.3) we may consider one of the following relations:

cosf (s)
exp (7 (s))’

sin(o(s) —0(s)) = (5.3)

o (s) =0 (s)+ arcsin (5.4)
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cosf (s
o(s) =m+0(s) — arcsin exp(r((s)))' (5.5)
Now we shall assume that the profile of the channel is symmetric i.e.

y (@) =y (~2) (5.6)

Due to the symmetry of the channel we have the relations
O(m—s)=—-m—0(s), (5.7)
Viir—s)=V{(s). (5.8)

From (3.2), (3.5), (5.7) and (5.8) it follows

Vis)=V*(r—s), 7(s)=7"(m—5). (5.9)

Let us assume that for the channel we have in view, the relation (5.4) is
valid. In this case, from (5.7) and (5.9), it results
cos b (s)

p (7 (5)) =-—-m—o(s). (5.10)

o(mr—s)=—m—0(s)— arcsin
From (5.10) it results that

w(0) = 1/(:0(3) ds = —g. (5.11)

Therefore, at infinity, in the flow domain

1 1k
W' = Shexp (—iw (0)) = % = w=ik. (5.12)

This happens when there is a drain at infinity.

Let us further assume that the relation (5.3) is equivalent to the relation
(5.5). From (5.5), (5.7) and (5.9) it follows that
0s 6 (s)

m:ﬂ—a(s), (5.13)

o(m—s)=—0(s)+ arcsin

whence
1 (7 T
w(0) = / o(s)ds=—. (5.14)
0 2
Therefore, at infinity, in the flow domain

ik

1
w* = 5k: exp (—iw (0)) = ) Le. w=0. (5.15)

This happens when at infinity there is an impermeable layer.
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6. An inverse method for the study of the water seepage from
symmetrical channels

6.1. Drain at infinity

Let

Sﬁ7r/li2r718127r/2 o (s) = pm. (6.1)

From (5.10) it follows that

o(s)=pm+o00(s), (6.2)
0(7r—3):—7r—,u7r—|—00(7r—s),56(0,%), (6.3)

where o is a continuous function such that
ol (g) =0, op(m—s)=—00(s), s€ (0, g) . (6.4)

According to (4.2), we may extend the domain of definition of og to
[0, 27] by putting

oo (2m —s) =00(s), s€(0,m). (6.5)
From (6.4) and (6.5) we deduce that the Fourier series of o (s) is

o0
oo (s) = Z asnt1cos(2n+1)s, azpt1 € R, n=0,1,.... (6.6)

n=0

From (4.3), (6.3) and (6.6) we get

WO = +20)im ST four g T + Y ama L (6.7)
C -1 2 n=0
7 (s) = Intan! 2 (f + E) + 70 (5) (6.8)
2 4 ’

with

oo
7o (s) = Z agn+18in (2n+ 1) s.
n=0
Introducing (6.3), (6.6) and (6.8) in (4.12) and (4.13), one obtains the
parametric equations of the profile of the channel. The integrals may be cal-
culated numerically (we may employ for example the trapeziums formula).
From (4.8) and (6.7) we obtain the conformal mapping z (¢) :

¢
Q) = 2(¢o) -2 ! )dC

kmi N\ 1+2p o0
o 1- <g i_ z> exp (2,um' —1 Z agni1 ¢ L

n=0

(6.9)
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If ( =rexp(is), 0 <r <1, we choose (; = exp (is) and z ((y) = x (s) +
iy (s) . The path of integration is the segment [(y, (] and the integral may
be calculated numerically using trapeziums formula or another approximate
integration formula.

The parametric equation of the phreatic lines Ay and Ay are

20 [¢ 1 d€
k -\ 142 o0
T 1— <§ i_ j) ' exp (—Q,um' —1 Z a2n+1§2n+1) ¢
n=0
£€(0,1]. (6.10)
2Q (¢ 1 de¢
() = —L— £,
ki | 142 0
7TZ/1 1 (gjz) Mexp (_2uﬁi—iza2n+1£2n+l> §
n=0
§e[-1,0). (6.11)
From (3.2), (3.4) and (6.7) we obtain the complex velocity in the points
z(¢):
. -\ 1420 o0}
wE@)=w©=7 1+(5) ew (—mm’ - i§a2n+1§2"+1>] .
(6.12)
Imposing z (1) = —L in (4.12), we get the seepage loss
kLm
Q= ) /7r/2 1 —sino (s)exp (7 (s)) p ‘ (6.13)
o 1—2sino (s)exp(7(s)) + exp (27 (s)) N

For o(s) =0, s € [O, g) ie. 0 =0, agpr1 = 0,mn = 0,1,..., we obtain

the analytical formulas:

7 (s) = Intan (g + %) : (6.14)
x(s):L—ﬂ2f2(s+coss—1), (6.15)
y(s) = —Wz_L sins, (6.16)

b(s) =5~ (6.17)

o = LT (6.18)
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Equations (6.15) and (6.16) are the parametric equations of an arc of cycloid
with an angular point.
From (3.2), (3.4), (4.3) and (5.10) we obtain Levi-Civitd’ s function

w (¢) =zlngtz +g
and the complex velocity
k
= ) 6.19
we) = 7 (619

From (3.1), (4.5) and (6.19) we get the conformal mapping of the unit
half-disk onto the flow domain in the porous medium

2L . m
Z(Q——m (C—ZlnC—§)7 (6.20)
as well as the parametric equations of the free lines:
2L ) m
2(§) = ———5 (¢—ilmg =T )5 €€ [-LO) U, 1. (6.21)

In figure 2 we present the seepage from channels having various profiles.
For the graphic representations we employ dimensionless variables:
37:37?4:57“:%77) :E’Q:E E
We use solid lines for the contour of the channel and the equipotential lines,
broken lines for the the streamlines (including the phreatic lines A1 and Ay)
and arrows for the velocity field. We also indicate the numerical values
of the dimensionless seepage loss @Q*. In figure 2.a) we considered o (s) =

* £ Y o« u *_£ *
,sO—kLﬂ/J

g—k%cos s, s € [0, g} , in figure 2.b) we considered o (s) = Z—i— % coss, s €

[0, g} , in figures 2.c) and d) we considered o (s) =0, s € [0, g} . We notice
a very good agreement between the numerical results obtained in figure 2.c)
and the analytical results obtained in figure 2.d) (by means of formulas
(6.14) - (6.21) for o = 0.

For the numerical computations we utilized in the ¢ - complex plane

e ()
JEXp | —
— N =12,

n

the mesh points ¢ (;; = vy, 1=0,1,...,m » . In the

flow domain we considered the mesh points z (C jl) obtained by means of the
conformal mapping (6.9). In this paper we take m = 20,n = 30.

We have to mention that for some values of the Fourier coefficients of
o we may obtain results which are unacceptable from a physical point of
view: self-intersecting channel profiles, self-intersecting phreatic lines, pos-
itive values of the vertical coordinates of the velocity. We find that the
results are unacceptable after examinig the graphic representations given by
the Matlab code.
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a) Q*=27588 ; b) Q*=4.8703

2 PRIV b
fesRaennsaiinnanrsnnsntiasnnanannt
e lu fror u‘_
, R N
(T T
-1.5 -1 -05 0 05 1 15

©)  Q%=54951

Figure 2. Seepage from various channels. Drain at infinity

6.2. Impermeable layer at infinity

Like in the previous case, performing similar calculations, we get:

o (s) = um + 0 (s),

a(ﬂ—s):—ﬂ—mr—l—ao(ﬂ—s),sG(O,g), (6.22)
O L e R IS
7 (s) = Intan® 1 (% + %) + 70 (s), (6.24)

2Q [° 1 d

20) = 2 ()2 e _ 3
0 1+ <C — 2) exp <—2M7T’i — z’nzz;)agnH(Z”H)

(6.25)
20 [¢ 1 d§

k N —142 )
T J1 14 (g i_ z) H exp <_2M7m' _ zz a2n+1£2n+1> f

n=0
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€€ (0,1]. (6.26)
20 [¢ 1 d§
() =-L-% o
k _ N\ —142 00
™ 1 14 <§ i_ Z) H exp (—Q,um’ . Z a2n+1§2n+1> 3
n=0
E S [_17 0) ’ (627)

; -\ —142 00
w(z(¢)) =w(C) = % [1 - <C +Z> Hexp (—Q/Mri —iZagan%H)] .

C ! n=0
(6.28)
™ .
Foro(s) =0, s € [0, —), we obtain
2
s
7(s) = —Intan <§ + Z) , (6.29)
L
<8>_7r+2+7r+2<0088_8)’ (6.30)
2L
y(s)= P sin s, (6.31)
s 7
=2 T 32
o) =57, (632
2kLm
Q= T (6.33)
C+7 m
= il -z
0O =il s 7,
ik¢
= 6.34
w0 =7, (6:31)
2Lq 7 wL
= In¢ — = 6.35
2L1 1 wL
= 1 —_ = _— —1 1 . .
(0= 22 (me- )+ T el (639
Equations (6.30) and (6.31) are the parametric equations of an arc of

cycloid.
In figure 3 we present the seepage from channels having various profiles.

2
In figure 3.a) we considered o (s) = —77T + g cos s, s € [0, g] , in figure 2.b)

_% + %cos s, s € [0, g}, in figures 3.c) and d) we

considered o (s) =0, s € [O, g} . We notice a very good agreement between

we considered o (s) =

the numerical results obtained in 3.c) and the anlytical results ontained in
3.d) (by means of formulas (6.29) - (6.36) for o = 0.
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a) Q=10041 b) Q*=10973
1}

f‘{’,ﬂm\g N
MY

Figure 3. Seepage from various channels. Impermeable layer at infinity
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