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1. Preliminaries

Let H be a complex Hilbert space, and B(H) be the algebra of all bounded
linear operators on H with the unit element I = IH.

A contraction on H is an operator T ∈ B(H) with ||T || ≤ 1, and T is
a strict contraction when ||T || < 1. Also, an operator T ∈ B(H) is strictly
positive, and will be denoted T > 0, if T is positive and invertible in B(H).
Clearly, I − T ∗T > 0 if and only if ||T || < 1.

The theory of contractions was developed in [16], having as a starting
point the classical inequality of von Neumann. Namely, this inequality says
that

||f(T )|| ≤ sup
|λ|=1

|f(λ)| (1.1)

for every contraction T on H, and any function f belonging to the disc
algebra A(D) of all (complex) continuous functions on D which are analytic
on the open unit disc D.

K. Fan [5] proved that the inequality (1.1) is equivalent to the fact that
||f(T )|| < 1 when ||T || < 1 and f is an analytic function on D with f(D) ⊂ D.
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This last result may be also derived from Harnack inequalities for strict
contractions, as it was showed by C. Foiaş (see [8]).

In this note we give some results for bicontractions, that is for commuting
pairs of contractions, which are similar to certain facts of Foiaş [8] and Fan
[5, 6, 7] for contractions.

Denote by A(D2) the bidisc algebra of all continuous functions on D2

which are analytic on D2, and by H∞(D2) the bounded analytic functions
on D2. Denote by T the unit circle in the complex plane.

Recall that Ando’s dilation theorem (see [2], see also [17]) ensures the
following version of von Neumann inequality for bicontractions.

Theorem 1.1. For every bicontraction (T0, T1) on H and f ∈ A(D2) one
has

||f(T0, T1)|| ≤ sup
w∈T2

|f(w)|. (1.2)

In the sequel we obtain some equivalent versions of Theorem 1.1 for
bicontractions, and thus we extend some corresponding results from [5, 6, 7]
and [8] for contractions. Among others, we prove a version of Schwarz’s
lemma and certain Harnack type inequalities for strict bicontractions. Such
inequalities refer to operator analytic functions, as well as to the functional
calculus f(T ) for a strict bicontraction T = (T0, T1) which means ||Tj || < 1,
j = 0, 1, where the function f is analytic on D2. Clearly, in this case f(T )
can be defined by the Taylor series of f on D2. We refer to Rudin’s book
[13] for the theory of analytic functions on the bidisk D2.

2. Versions of the von Neumann inequality

We begin with the following main fact.

Theorem 2.1. If f is an analytic function on D2 with f(D2) ⊂ D, then for
every strict bicontraction (T0, T1) on H we have ||f(T0, T1)|| < 1.

Proof. Let f and (T0, T1) be as above. Choose λn ∈ D with |λn| → 1
(n→∞) and define the functions

fn =
1 + λnf

1− λnf
(n ≥ 1).

Then fn is analytic and Refn ≥ 0, on D2. On the other hand, for 0 < r < 1
we have fr = f(r ·) ∈ A(D2) and ||fr|| ≤ 1, therefore ||fr(T0, T1)|| ≤ 1 by the
inequality (1.2). Letting r → 1 we get ||f(T0, T1)|| ≤ 1, and since |λn| < 1
we infer that I−λnf(T0, T1) is invertible in B(H). As fn(1−λnf) = 1+λnf
we obtain

fn(T0, T1) = (I + λnf(T0, T1))(I − λnf(T0, T1))−1.
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Suppose that ||f(T0, T1)|| = 1, and let us consider hn ∈ H with ||hn|| = 1
for any n ≥ 1 such that ||f(T0, T1)hn|| → 1, n→∞. We put

kn = (I − λnf(T0, T1))hn, k0
n = (1− λnf(0, 0))−1kn (n ≥ 1),

and so we get

〈Refn(T0, T1)kn, kn〉 = Re〈(I + λnf(T0, T1))hn, (I − λnf(T0, T1))hn〉
= 1− |λn|2||f(T0, T1)hn||2 → 0, n→∞.

On the other hand, we have

〈Refn(0, 0)kn, kn〉 = Re〈(1 + λnf(0, 0))k0
n, (1− λnf(0, 0))k0

n〉
= (1− |λnf(0, 0)|2)||k0

n||2.

Since (T0, T1) is a strict bicontraction, it is Harnack equivalent to the null
bicontraction (0, 0) (see [15, Theorem 3.6]), hence there exists a constant
c ≥ 1 such that

Refn(0, 0)I ≤ cRefn(T0, T1)

for any n ≥ 1. This inequality and the previous relations imply

(1− |λnf(0, 0)|2)||k0
n||2 → 0, n→∞.

Since |λn| < 1 for any n and |f(0, 0)| < 1 we have

0 < (1− |f(0, 0)|2)||k0
n||2 ≤ (1− |λnf(0, 0)|2)||k0

n||2.

Hence kn → 0, for n→∞. Finally, having in view the expression of kn, and
taking λn = 1− 1

n and later λn = −1 + 1
n , we get hn → 0 (n → ∞), which

contradicts the fact that ||hn|| = 1 for any n. So ||f(T0, T1)|| < 1 and the
proof is finished. 2

Remark 2.1. From the previous proof we infer that Theorem 1.1 implies
Theorem 2.1. Conversely, let f ∈ A(D2), f 6= 0 and (T0, T1) be a bi-
contraction on H. For every r ∈ (0, 1) we have by Theorem 2.1 that
||g(rT0, rT1)|| < 1 where g = f

||f || , since g(D2) ⊂ D by the maximum
modulus principle. Letting r → 1 we get ||g(T0, T1)|| ≤ 1, or equivalently
||f(T0, T1)|| ≤ ||f ||. So Theorem 1.1 follows from Theorem 2.1.

Remark also that Theorem 2.1 is the version for bicontractions of the
corresponding result of K. Fan [5] for contractions, but our proof is different
from the one of [5]. Here we used an argument inspired by C. Foiaş (see [8]).

Another version for bicontractions of a corresponding result of [5] for
contractions, is the following form of the maximum modulus principle for
analytic functions on D2.
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Theorem 2.2. For every analytic function f on D2 and 0 ≤ r < 1 we have

sup
||Tj ||≤r

||f(T0, T1)|| = sup
|z0|=|z1|=r

|f(z0, z1)|, (2.1)

where the supremum in the left side of (2.1) is taken over all bicontractions
(T0, T1) on H with ||Tj || ≤ r, j = 0, 1.

Proof. Let f 6= 0 be as above and 0 < r < 1. We denote

||f ||r = sup
|z0|=|z1|=r

|f(z0, z1)|,

so ||f ||r 6= 0. Then the function g = fr

||f ||r belongs to A(D2) and ||g|| = 1,
while by (1.2) we have ||g(T0, T1)|| ≤ 1 for every bicontractions (T0, T1) on
H. So, if ||Tj || ≤ r, j = 0, 1, we obtain

||f(T0, T1)|| = ||fr(
1
r
T0,

1
r
T1)|| ≤ ||f ||r,

hence
sup
||Tj ||≤r

||f(T0, T1)|| ≤ ||f ||r,

which gives an inequality in (2.1). The converse inequality is trivial: if
wj ∈ D with |wj | = r and |f(w0, w1)| = ||f ||r then

||f ||r = ||f(w0I, w1I)|| ≤ sup
||Tj ||≤r

||f(T0, T1)||.

This ends the proof. 2

Remark 2.2. As we saw, the previous result is a direct consequence of The-
orem 1.1. Furthermore, Theorem 2.2 clearly implies Theorem 2.1. Indeed, if
f is an analytic function on D2 with f(D2) ⊂ D and (T0, T1) is a strict bicon-
traction on H, then applying Theorem 2.2 with r = max(||T0||, ||T1||) < 1,
we get

||f(T0, T1)|| ≤ ||f ||r < 1,

that is the conclusion of Theorem 2.1.

Another result closely related to the above theorems is the following:

Theorem 2.3. Let f, g, l be analytic functions on D2 such that f = lg and
|l(z)| ≤ 1 for z ∈ D2. Then for every strict bicontraction T = (T0, T1) on H
we have

f(T )∗f(T ) ≤ g(T )∗g(T ) (2.2)
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and

||f(T )|| ≤ ||g(T )||. (2.3)

Moreover, the strict inequality holds in (2.2) if and only if g(T )∗g(T )
is strictly positive and l is not a constant function of modulus 1. Also, the
equality in (2.3) occurs if and only if either g(T ) = 0, or l is a constant
function with |l| = 1.

Proof. We can assume that l is not reduced to a constant λ with |λ| = 1
(otherwise, we have the equality in both relations (2.2) and (2.3)). Then
by hypothesis and the maximum modulus principle one has |l(z)| < 1 for
z ∈ D2, while by Theorem 2.1 we have ||l(T )|| < 1 for every bicontraction
T = (T0, T1) with ||Tj || < 1, j = 0, 1. Since f = lg we get f(T ) = l(T )g(T )
and

f(T )∗f(T ) = g(T )∗l(T )∗l(T )g(T ) ≤ ||l(T )||2g(T )∗g(T ).

If follows that

g(T )∗g(T )− f(T )∗f(T ) ≥ (1− ||l(T )||2)g(T )∗g(T ), (2.4)

whence we infer the inequalities (2.2) and (2.3). When g(T )∗g(T ) > 0 (a
positive invertible operator), the inequality (2.4) leads to the strict inequality
in (2.2), and conversely, when the inequality (2.2) is strict one has

g(T )∗g(T ) ≥ g(T )∗g(T )− f(T )∗f(T ) > 0.

Now, if ||f(T )|| = ||g(T )|| then ||f(T )|| ≤ ||l(T )|| ||f(T )||, hence

||f(T )||(1− ||l(T )||) ≤ 0.

This yields either f(T ) = 0, or 1 − ||l(T )|| ≤ 0, while the last inequality
implies (by Theorem 2.1 and the maximum modulus principle) that l(z) = λ
for z ∈ D2 with |λ| = 1. Conversely, if either l has such a form or g(T ) = 0,
then clearly ||f(T )|| = ||g(T )||. This ends the proof. 2

Remark that we used Theorem 2.1 to obtain Theorem 2.3, but Theorem
2.1 may be also regarded as a special case (g = 1) of the last theorem. Thus,
Theorems 2.1, 2.2 and 2.3 are versions of Theorem 1.1 for bicontractions.
These facts involving strict bicontractions, are similar to the corresponding
results of K. Fan (see [5]) for strict contractions.

Notice from [14] and [15] that Theorem 2.1 can be also obtained from
Harnack inequalities for strict bicontractions, and that from Theorem 2.3
we can derived some Harnack type inequalities for such bicontractions, sim-
ilar to those from [5] for strict contractions, or more general, for strict ρ-
contractions which were obtained in [3, 4].

As another application of Theorem 2.3, we deduce now the following
operator analogue of Schwarz’s lemma on bidisk. Recall that an extension
of this lemma for contractions was given in [5], while the version for ρ-
contractions appears in [3, 4].
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Proposition 2.1. Let f ∈ H∞(D2) with ||f∞|| ≤ 1. Then for any strict
bicontraction T = (T0, T1) on H we have

|| ∂f
∂z0

(T ) +
∂f

∂z1
(T )|| ≤ ||I − f(T )2||

1−maxj=0,1 ||Tj ||2
. (2.5)

Proof. It is known (see [1], [13]) that Schwarz’s lemma on D2 says that for
z = (z0, z1) ∈ D2 one has

(1− |z0|2)| ∂f
∂z0

(z)|+ (1− |z1|)|
∂f

∂z1
(z)| ≤ 1− |f(z)|2. (2.6)

Let T = (T0, T1) be a strict bicontraction on H and r = maxj=0,1 ||Tj ||.
Then for z = (z0, z1) with ||zj || = r, j = 0, 1 one obtains

(1− r2)(| ∂f
∂z0

(z)|+ | ∂f
∂z1

(z)|) ≤ |1− f(z)2|,

while by Theorem 2.2 we get

(1− r2)||( ∂f
∂z0

(T ) +
∂f

∂z1
(T ))(I − f(T )2)−1|| ≤

sup
|zj |=r

(1− r2)
| ∂f∂z0 (z) + ∂f

∂z1
(z)|

|1− f(z)2|
≤ 1.

Note that by the maximum modulus principle we have f(D2) ⊂ D and so
||f(T )|| < 1 by Theorem 2.1, if f is not reduced to a constant. The above
inequality leads to

(1− r2)|| ∂f
∂z0

(T ) +
∂f

∂z1
(T )|| ≤ ||I − f(T )2||,

which means (2.5). This ends the proof. 2

Notice that this result is a weaker form of Schwarz’s lemma because for
f ∈ H∞(D2) with ||f ||∞ ≤ 1 we only infer from (2.5) that | ∂f∂z0 (0)+ ∂f

∂z1
(0)| ≤

|1− f(0)2| (to compare with (2.6) for z = 0).

Remark 2.3. From the inequality (2.6) it follows by Theorem 2.2 that (for
f and T as in Proposition 2.1)

||f(T )2 + (1− max
j=0,1

||Tj ||2)(
∂f

∂z0
(T ) +

∂f

∂z1
(T ))|| ≤ 1, (2.7)

but we do not know if the above contraction is a strict contraction.
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3. Harnack type inequalities

It is well known from [5] that the version of Theorem 2.3 for the functions of
a single variable leads to operator analogue of Schwarz’s lemma, and of the
classical Harnack and Carathéodory inequalities. These facts are essentially
based on Schwarz’s lemma, concerning the factorization of a contractive
analytic function f on D with f(0) = 0 by the function u(z) = zn, where n
is the order of multiplicity of z = 0 for f . A similar factorization fails for the
functions in H∞(D2) (see [1], [13]), and even the role of Blaschke products
cannot be ”well-defined” in this context.

However, for the functions in H∞(D2) which have the same zeros with
certain inner functions, we can obtain some Harnack type inequalities for
strict bicontractions.

Recall that f ∈ H∞(D2) is an inner function if |f∗| = 1 a.e. on T2

relative to the (normalized) Lebesgue measure m2 on T2, where f∗ is the
radial function of f .

An inner function f ∈ H∞(D2) is called a good inner function if the least
2-harmonic majorant for the function log |f | is the null function. Equiva-
lently, this means that for a.e. (m2) w ∈ T2, the function f̂w is a Blaschke
product on D, where f̂w(λ) = f(λw), λ ∈ D (see [13]).

The fact that two functions f, f0 ∈ H∞(D2) have the same zeros, means
that there exists an analytic function g on D2 which has no zeros in D2, such
that f = f0g. In this case, we also say that f can be factorized by f0.

Now, we can obtain some Harnack type inequalities for strict bicontrac-
tions, similar to those of [5, 6, 7] for strict contractions.

Theorem 3.1. Let f ∈ H∞(D2) with Ref(z) > 0 for z ∈ D2, such that
f − 1 has the same zeros like a good inner function f0 in D2. Then for any
strict bicontraction T = (T0, T1) on H, the following inequalities hold:

[I − f(T )∗][I − f(T )] ≤ [I + f(T )∗]f0(T )∗f0(T )[I + f(T )], (3.1)

1− ||f0(T )||
1 + ||f0(T )||

≤ ||f(T )|| ≤ 1 + ||f0(T )||
1− ||f0(T )||

, (3.2)

1− ||f0(T )||
1 + ||f0(T )||

I ≤ Ref(T ) ≤ 1 + ||f0(T )||
1− ||f0(T )||

I, (3.3)

−2||f0(T )||
1− ||f0(T )||2

I ≤ Imf(T ) ≤ 2||f0(T )||
1− ||f0(T )||2

I. (3.4)

Strict inequality in (3.1) occurs if and only if f0(T )∗f0(T ) > 0 and f fails
to have the form f = (1 + λf0)(1− λf0)−1 for some scalar λ with |λ| = 1.
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Proof. We consider the function g = (f − 1)(f + 1)−1 ∈ H∞(D2), which
has the same zeros like f − 1 and so, as f0 in D2. Hence there exists an
analytic function f1 on D2 such that f1(z) 6= 0, z ∈ D2 and g = f0f1. Since
f0 is a good inner function, by Theorem 5.4.2 [13] we have f1 ∈ H∞(D2)
and ||f1||∞ = ||g||∞ ≤ 1. Thus, if T = (T0, T1) is a strict bicontraction on
H, by Theorem 2.3 one has

g(T )∗g(T ) ≤ f0(T )∗f0(T ),

or equivalently,

[I + f(T )∗]−1[I − f(T )∗][I − f(T )][I + f(T )]−1 ≤ f0(T )∗f0(T ).

Clearly, this relation can also be written in the form (3.1). In addition, we
infer from Theorem 2.3 that the strict inequality in (3.1) occurs if and only
if f0(T )∗f0(T ) > 0 and the above function f1 is not reduced to a constant λ
with |λ| = 1, or in other words, f is not of the form f = (1+λf0)(1−λf0)−1

with |λ| = 1.
Next, we obtain from (3.1)

||f(T )|| − 1 ≤ ||I − f(T )|| ≤ ||f0(T )||(1 + ||f(T )||),

or equivalently,

||f(T )||(1− ||f0(T )||) ≤ 1 + ||f0(T )||.

Since f0 is an inner function, by the maximum modulus principle one has
|f0(z)| < 1 for z ∈ D2, and by Theorem 2.1 we have ||f0(T )|| < 1. So, the
previous inequality gives the inequality on the right of (3.2).

Now, the assumption on f implies f(z) 6= 0, z ∈ D2, and also f−1 − 1
has the same zeros like f0. Then by the above remark we get

1
||f(T )||

≤ ||f−1(T )|| ≤ 1 + ||f0(T )||
1− ||f0(T )||

,

whence it follows the inequality on the left of (3.2).
It is easy to see that both inequalities (3.2) are equivalent to the following

inequality

||f(T )− 1 + ||f0(T )||2

1− ||f0(T )||2
I|| ≤ 2||f0(T )||

1− ||f0(T )||2
. (3.5)

Since we have

±Re[f(T )− 1 + ||f0(T )||2

1− ||f0(T )||2
I] ≤ ||f(T )− 1 + ||f0(T )||2

1− ||f0(T )||2
I||,

we infer the inequalities (3.3) from (3.5). Also (3.5) implies (3.4) because

±Imf(T ) = ±Im[f(T )− 1 + ||f0(T )||2

1− ||f0(T )||2
I] ≤ ||f(T )− 1 + ||f0(T )||2

1− ||f0(T )||2
I||.

The proof is finished. 2
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Remark 3.1. Suppose f ∈ H∞(D2) with Ref(z) > 0 for z ∈ D2 such that
f − Ref(0) has the same zeros as a good inner function f0 in D2. Then
all inequalities (3.1)-(3.5) hold also for the function f [Ref(0)]−1 instead
of f . This shows that, for instance, the corresponding inequalities (3.3)
obtained in this case are some generalizations for bidisk, and in the context
of bicontractions, of the classical Harnack’s inequalities. But the inequalities
given by Theorem 3.1 only refer to the functions in H∞(D2) which can be
factorized by good inner functions.

Remark 3.2. A good inner function f0 having the same zeros like a func-
tion f ∈ H∞(D2), if it exists, is uniquely determined up to a unimodular
constant. Recall ([13], Theorem 5.4.3) that there exists such a function
f0 for f , if the least 2-harmonic majorant for log |f | is the real part of an
analytic function on D2; in particular, this happens when the quoted majo-
rant is just Poisson integral of the function log |f∗| ([13], Theorem 5.4.6 and
Theorem 5.4.7). But in general, there is f ∈ H∞(D2) such that f cannot
be factorized by inner functions ([13], Theorem 5.4.8). By contrast, any
function 0 6= f ∈ A(D2) has the same zeros like an inner function, but not
necessary a good inner function ([13], Theorem 5.4.5).

If f ∈ H∞(D) then f has a good inner factor f0 which is a Blaschke
product ([13], Theorem 5.3.2). By Schwarz’s lemma f can be factorized by
any Blaschke factor which gives a zero of f . So, if f(D) ⊂ D and f(0) =
f ′(0) = ... = f (n−1)(0) = 0 for some integer n ≥ 1, then f0(z) = znf1(z),
z ∈ D, where f1 ∈ H∞(D) and |f1| ≤ 1. Then for any strict contraction T
on H one has ||f0(T )|| ≤ ||Tn||, and thus we can deduce similar inequalities
to (3.1)-(3.5) with Tn (T a strict contraction) instead of f0(T ) from above.
Such inequalities are given in [5, Corollary 3] and [6, Proposition 2].

Recently (see [15]) we obtained some Harnack inequalities for the func-
tional calculus with strict bicontractions and with analytic functions on
bidisk, without the hypothesis of factorization by good inner functions. We
see now these inequalities for operator-valued analytic functions on D2.

Theorem 3.2. Let Θ : D2 → B(H) be an analytic function on D2 such that
ReΘ(z) > 0 for any z ∈ D2. Then the inequalities

(1− |z0|)(1− |z1|)
(1 + |z0|)(1− |z1|)

ReΘ(0) ≤ ReΘ(z) ≤ (1 + |z0|)(1 + |z1|)
(1− |z0|)(1− |z1|)

ReΘ(0), (3.6)

and

ImΘ(0)− 2(|z0|+ |z1|+ 2|z0z1|)
(1− |z0|2)(1− |z1|2)

ReΘ(0) ≤ ImΘ(z) ≤ (3.7)

≤ 2(|z0|+ |z1|+ 2|z0z1|)
(1− |z0|2)(1− |z1|2)

ReΘ(0) + ImΘ(0)
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hold for all z = (z0, z1) ∈ D2.

Proof. We use Proposition 3 from [7], which claims that if F is a B(H)-
valued analytic function on D with ReF (λ) > 0 for λ ∈ D and F (0) = I,
then the following inequalities hold:

1− |λ|
1 + |λ|

I ≤ ReF (λ) ≤ 1 + |λ|
1− |λ|

I,
−2|λ|

1− |λ|2
I ≤ ImF (λ) ≤ 2|λ|

1− |λ|2
I. (3.8)

In the case F (0) 6= I we have F (0)h 6= 0 for any h ∈ H, h 6= 0, because
F (0) is a positive invertible operator. In this case, we can consider the
function Fh on D given by

Fh(λ) =
〈(F (λ)− iImF (0))h, h〉

〈ReF (0)h, h〉
(λ ∈ D)

which is analytic in D with ReFh(λ) > 0 and Fh(0) = 1. Applying (3.8) and
having in view that h ∈ H is arbitrary, we obtain

1− |λ|
1 + |λ|

ReF (0) ≤ ReF (λ) ≤ 1 + |λ|
1− |λ|

ReF (0)

and

ImF (0)− 2|λ|
1− |λ|2

ReF (0) ≤ ImF (λ) ≤ 2|λ|
1− |λ|2

ReF (0) + ImF (0).

Let Θ be as in hypothesis. For w ∈ D we define the functions Θ0
w,Θ

1
w :

D → B(H) by Θ0
w(λ) = Θ(w, λ), Θ1

w(λ) = Θ(λ,w), λ ∈ D. Then Θ0
w,Θ

1
w

are analytic on D with ReΘj
w(λ) > 0 for λ ∈ D and j = 0, 1. Thus, by

the previous inequalities for Θ0
w and Θ1

w we have, successively, for any z =
(z0, z1) ∈ D2

ReΘ(z) = ReΘ1
z1(z0) ≤ 1 + |z0|

1− |z0|
ReΘ(0, z1) =

1 + |z0|
1− |z0|

ReΘ0
0(z1)

≤ 1 + |z0|
1− |z0|

· 1 + |z1|
1− |z1|

ReΘ(0),

and respectively

ReΘ(z) ≥ 1− |z0|
1 + |z0|

ReΘ0
0(z1) ≥ 1− |z0|

1 + |z0|
· 1− |z1|

1 + |z1|
ReΘ(0).

In a similar way, we find

ImΘ(z) = ImΘ0
z0(z1) ≤ 2|z1|

1− |z1|2
ReΘ(z0, 0) + ImΘ(z0, 0) ≤

≤ 2|z1|
1− |z1|2

· 1 + |z0|
1− |z0|

ReΘ(0, 0) +
2|z0|

1− |z0|2
ReΘ(0) + ImΘ(0)

=
2[|z0|+ |z1|+ |z0z1|(2 + |z0| − |z1|)]

(1− |z0|2)(1− |z1|2)
ReΘ(0) + ImΘ(0).
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Note that if we consider firstly Θ(z) = Θ1
z1(z0), we obtain a similar inequality

where the term |z1| − |z0| appears to the coefficient of ReΘ(0). Since |zj | −
|z1−j | ≤ 0 for j = 0 or j = 1 and ReΘ(0) > 0, we infer that

ImΘ(z) ≤ 2(|z0|+ |z1|+ 2|z0z1|)
(1− |z0|2)(1− |z1|2)

ReΘ(0) + ImΘ(0).

By symmetry, we also have

ImΘ(z) ≥ ImΘ0
z0(0)− 2|z1|

1− |z1|2
ReΘ0

z0(0)

= ImΘ1
0(z0)− 2|z1|

1− |z1|2
ReΘ1

0(z0)

≥ ImΘ(0)− 2|z0|
1− |z0|2

ReΘ(0)− 2|z1|
1− |z1|2

· 1 + |z0|
1− |z0|

Reθ(0)

= ImΘ(0)− 2[|z0|+ |z1|+ |z0z1|(2 + |z0| − |z1|)]
(1− |z0|2)(1− |z1|2)

ReΘ(0).

Having in mind the other inequality which one obtains if we firstly consider
Θ(z) = Θ1

z1(z0), we infer as above that

ImΘ(z) ≥ ImΘ(0)− 2(|z0|+ |z1|+ 2|z0z1|)
(1− |z0|2)(1− |z1|2)

ReΘ(0) + ImΘ(0).

This ends the proof. 2

Corollary 3.1. Let Θ be a B(H)-valued analytic function on D2 such that
ReΘ(z) > 0 for z ∈ D2 and Θ(0) = I. Then for 0 < r < 1 we have

sup
|zj |=r

||Θ(z0, z1)|| ≤ (1 + r)3 + 4r
(1− r)2(1 + r)

. (3.9)

Proof. If |zj | = r (j = 0, 1) then the inequalities (3.6) and (3.7) become
(because Θ(0) = I)

Reθ(z0, z1) ≤ (
1 + r

1− r
)2I, ±Imθ(z0, z1) ≤ 4r(1 + r)

(1− r2)2
I.

These imply the inequality (3.9) because

||Θ(z)|| ≤ ||Reθ(z)||+ ||ImΘ(z)||,

and ReΘ(z) > 0, while Imθ(z) is a selfadjoint operator, for any z ∈ D2. 2
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Remark 3.3. Corollary 3.1 yields a complete analogy to the unit disk case.
Indeed, if F is a function as in the proof of Theorem 3.2, then it follows from
(3.8) that for 0 < r < 1 one has

sup
|λ|=r

||F (λ)|| ≤ (1 + r)2 + 2r
1− r2

.

Let us notice that we proved in [15] similar inequalities to (3.6), for the
functional calculus f(T ) with analytic functions f on D2 such that Ref > 0,
induced by strict bicontractions T = (T0, T1) on H. More exactly, we have

(1− ||T0||)(1− ||T1||)
(1 + ||T0||)(1 + ||T1||)

Ref(0)I ≤ Ref(T ) ≤ (3.10)

≤ (1 + ||T0||)(1 + ||T1||)
(1− ||T0||)(1− ||T1||)

Ref(0)I.

This result was obtained using some B(H)-valued semispectral measure
canonically attached to T , and of course, we also applied the result of C.
Foiaş (see [8]) concerning Harnack inequality for strict contractions. The
above inequalities yield immediately that the hyperbolic distance between
(T0, T1) and (0, 0) is not greater than the sum of hyperbolic distances be-
tween T0 and 0, and between T1 and 0.

Remark that recently, by a series of three papers, G. Popescu [10, 11, 12]
develops a non-commutative hyperbolic geometry on the unit ball of B(H)n,
having as a starting point the operator Harnack inequalities for contractions,
and the corresponding hyperbolic metric (see [15]). Harnack inequalities
obtained by G. Popescu show, in particular, that if a bicontraction T =
(T0, T1) satisfies also ||T0T

∗
0 + T1T

∗
1 || < 1, then the inequalities (3.6) and

(3.10) can be improved by a constant less than the one which appears in the
quoted inequalities.

Acknowledgments

The authors are grateful to the referee for a careful reading of the manuscript
and for his useful comments which improved the original version.

References

[1] J. Agler and J.E. Mc Carthy, What Hilbert spaces can tell us about bounded
functions in the bidisk, preprint, arXiv:0901.0907v1[math.CV].

[2] T. Ando, On a pair of commutative contractions, Acta Sci. Math. (Szeged), 24
(1963), 88-90.

[3] G. Cassier and N. Suciu, Mapping theorems and Harnack ordering for ρ-
contractions, Indiana Univ. Math. J., 55 (2006), 483-523.



Inequalities for strict bicontractions 177

[4] G. Cassier and N. Suciu, Analytic functions of a uniformly stable ρ-contraction,
Operator Theory 20, Theta Ser. Adv. Math., 6 (2006), 55-73.

[5] K. Fan, Analytic function of a proper contraction, Math. Z., 160 (1978), 275-290.

[6] K. Fan, Harnack inequalities for operators, General Inequalities, 2 (Proc. Second
Internat. Conf., Oberwolfach, 1978), pp. 333-339, Birkhäuser, Boston, 1980.
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150.

Laurian Suciu
Department of Mathematics, University “Lucian Blaga”
Sibiu, Romania
E-mail: laurians2002@yahoo.com

Nicolae Suciu
Department of Mathematics, West University of Timişoara
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