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Abstract - Let T : X → Y be a continuous linear operator with closed
range, where X and Y are Hilbert spaces. In this paper we present some
new results concerning of stability analysis for the equation T (x) = y and
the least squares equation ‖T (x) − b‖ = inf

z∈X
‖T (z) − b‖ with some type

perturbations.
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1. Introduction

The operator equations and the least squares problems are widely used in
various areas of computational and applied mathematics (see, for example,
[1]). Hence its stability (or perturbation analysis) is important in error
estimate for computing solutions. In this paper we present results for the
stability of some operator equation in Hilbert spaces which generalize well-
known results for matrix equations and improve some formulas obtained in
[2], [3] and [4]. The main tools of our work are the pseudoinverse of a linear
continuous operator and an associated condition number. For the theory of
pseudoinverse we can see [1].

Let T : X → Y be a continuous linear operator with closed range, where
X and Y are Hilbert spaces. Denote by Tx = T (x), for all x ∈ X and
by R(T ) := {y ∈ Y | there exists x ∈ X such that y = Tx} the range of
T . Assume that R(T ) is a closed subspace in Y . Let T+ : Y → X be the
pseudoinverse (Moore-Penrose inverse) of T and let us consider the condition
number of T given by cond(T ) := ‖T‖ · ‖T+‖.
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2. The stability of Tx = b type equation with Ty = b + δb type
perturbation

We consider the following operator equations:

Tx = b (2.1)

and
Ty = b+ δb (2.2)

with b, b+ δb ∈ R(T ), b 6= 0.

Theorem 2.1. a) For each solution x of the equation (2.1) there exists a
solution y0 of the equation (2.2) such that

‖y0 − x‖
‖x‖

≤ cond(T ) · ‖δb‖
‖b‖

.

b) For each solution y of the equation (2.2) there exists a solution x0 of
the equation (2.1) such that

‖y − x0‖
‖x0‖

≤ cond(T ) · ‖δb‖
‖b‖

.

Proof. Let us consider x ∈ X which verifies the equation Tx = b and
z ∈ N(T ). We take y := x + T+δb + z. Then Ty = Tx + TT+δb + Tz.
We have TT+δb = δb, because δb = b + δb − b ∈ R(T ). It results that
Ty = Tx+ δb = b+ δb. So y verifies the equation Ty = b+ δb.

Let y0 := x+ T+δb (which is the value corresponding to z = 0). On one
side, y0 − x = T+δb, which implies

‖y0 − x‖ ≤ ‖T+‖‖δb‖.

On the other side,

‖b‖ = ‖Tx‖ ≤ ‖T‖‖x‖ ⇒ 1
‖x‖
≤ ‖T‖
‖b‖

.

It results that

‖y0 − x‖
‖x‖

≤ ‖T+‖‖δb‖‖T‖
‖b‖

= cond(T ) · ‖δb‖
‖b‖

.

b) Let us consider y ∈ X which verifies the equation Ty = b + δb and
z ∈ N(T ). We take x := y − T+δb − z. Then Tx = Ty − TT+δb − Tz =
b+ δb− δb = b. So x verifies the equation Tx = b.

Let x0 := y− T+δb (which is the value corresponding to z = 0). On one
side, y − x0 = T+δb, so

‖y − x0‖ ≤ ‖T+‖‖δb‖.
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On the other side,

‖b‖ = ‖Tx0‖ ≤ ‖T‖‖x0‖ ⇒
1
‖x0‖

≤ ‖T‖
‖b‖

.

It results that

‖y − x0‖
‖x0‖

≤ ‖T+‖‖δb‖‖T‖
‖b‖

= cond(T ) · ‖δb‖
‖b‖

.

2

Theorem 2.2. a) For any solution x of the equation (2.1) and any solution
y of the equation (2.2) we have

‖y − x‖
d(x,N(T ))

≥ 1
cond(T )

· ‖δb‖
‖b‖

.

b) For any solution y of the equation (2.2) there exists a solution x0 of
the equation (2.1) such that

‖y − x0‖
‖x0‖

≥ 1
cond(T )

· ‖δb‖
‖b‖

.

Proof. From Tx = b and Ty = b + δb it results that T (y − x) = δb and
therefore

‖y − x‖ ≥ ‖δb‖
‖T‖

.

a) From Tx = b it results that there exists z ∈ N(T ) such that x =
T+b+ z. Then

‖x− z‖ = ‖T+b‖ ≤ ‖T+‖‖b‖ ⇒

1
‖x− z‖

≥ 1
‖T+‖‖b‖

⇒ 1
d(x,N(T ))

≥ 1
‖T+‖‖b‖

.

Hence
‖y − x‖

d(x,N(T ))
≥ ‖δb‖
‖T‖

· 1
‖T+‖‖b‖

=
1

cond(T )
· ‖δb‖
‖b‖

.

b) Let x0 = T+b. Then

‖x0‖ = ‖T+b‖ ≤ ‖T+‖‖b‖ ⇒ 1
‖x0‖

≥ 1
‖T+‖‖b‖

.

Hence
‖y − x0‖
‖x0‖

≥ ‖δb‖
‖T‖

· 1
‖T+‖‖b‖

=
1

cond(T )
· ‖δb‖
‖b‖

.

2
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3. The stability of Tx = b type equation with (T + ∆T )y = b type
perturbation

We consider the following operator equations:

Tx = b (3.1)

and
(T + ∆T )y = b, (3.2)

where b ∈ R(T ) ∩R(T + ∆T ), b 6= 0,∆T ∈ L(X,Y ).

Theorem 3.1. a) For each solution y of the equation (3.2) there exists a
solution x0 of the equation (3.1) such that

‖y − x0‖
‖y‖

≤ cond(T ) · ‖∆T‖
‖T‖

.

b) If ‖∆T‖ · ‖T+‖ < 1 then, for each solution y of the ecuation (3.2) there
exists a solution x0 for the equation (3.1) such that

‖y − x0‖
‖x0‖

≤ cond(T ) · ‖∆T‖
‖T‖

· 1
1− ‖∆T‖ · ‖T+‖

=

= cond(T ) · ‖∆T‖
‖T‖

(1 +O(∆T )) .

Proof. a) Let x ∈ X be a solution of the equation (3.1) and y ∈ X be a
solution of the equation (3.2). Then T (y − x) = −∆Ty and consequently
∆Ty ∈ R(T ).

Let us consider y ∈ X which verifies the equation (T + ∆T )y = b and
z ∈ N(T ). We take x := y+T+∆T − z. Then Tx = Ty+TT+∆Ty−Tz =
(T + ∆T )y = b, so x verifies the equation Tx = b.

Consider x0 := y+ T+∆Ty (which is the value corresponding to z = 0).
Then y − x0 = T+δb⇒ ‖y − x0‖ ≤ ‖T+‖‖δb‖. Therefore

‖y − x0‖
‖y‖

≤ ‖∆T‖ · ‖T
+‖ · ‖y‖

‖y‖
= cond(T ) · ‖∆T‖

‖T‖
.

b) If ‖∆T‖ · ‖T+‖ < 1, then ‖∆TT+‖ < 1. It follows that there exists
(IY + ∆TT+)−1 and

‖(IY + ∆TT+)−1‖ ≤ 1
1− ‖∆TT+‖

≤ 1
1− ‖∆T‖ · ‖T+‖

.

Let x ∈ X be a solution of the equation (3.1) and y ∈ X be a solution of
the equation (3.2). From a) we have T (y−x) = −∆Ty. It results that there
exists z ∈ N(T ) such that y−x = −T+∆Ty+z. Then (IX +T+∆T )y = x+z
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and y = (IX + T+∆T )−1(x + z). If we take x0 corresponding to z = 0, we
obtain y = (IX + T+∆T )−1x0 and y − x0 = −T+∆T (IX + T+∆T )−1x0.
Hence

‖y − x0‖
‖x0‖

≤ ‖T
+∆T‖ · ‖IY + ∆TT+‖ · ‖x0‖

‖x0‖
≤

≤ ‖∆T‖ · ‖T+‖
1− ‖∆T‖ · ‖T+‖

= cond(T ) · ‖∆T‖
‖T‖

1
1− ‖∆T‖ · ‖T+‖

=

= cond(T ) · ‖∆T‖
‖T‖

1 +
‖T+‖

1
‖∆T‖

− ‖T+‖

 = cond(T ) · ‖∆T‖
‖T‖

(1 +O(∆T )) ,

because, if ‖∆T‖ → 0, then
‖T+‖

1
‖∆T‖

− ‖T+‖
→ 0. 2

Theorem 3.2. For each solution x of the equation (3.1) and each solution
y of the equation (3.2), we have

‖y‖
d(x,N(T ))

≥ 1
cond(T )

· 1

1 +
‖∆T‖
‖T‖

=
1

cond(T )
(1−O(∆T )) .

Proof. From (T + ∆T )y = b it results that

‖y‖ ≥ ‖b‖
‖T + ∆T‖

.

Since Tx = b we infer that there exists z ∈ N(T ) such that x = T+b + z.
Then

‖x− z‖ ≤ ‖T+‖ · ‖b‖ ⇒ 1
‖x− z‖

≥ 1
‖T+‖ · ‖b‖

,

and
‖y‖
‖x− z‖

≥ 1
‖T+‖ · ‖T + ∆T‖

.

Thus

‖y‖
d(x,N(T ))

≥ ‖y‖
‖x− z‖

≥ 1
cond(T )

· ‖T‖
‖T + ∆T‖

≥ 1
cond(T )

· ‖T‖
‖T‖+ ‖∆T‖

=

=
1

cond(T )
· 1

1 +
‖∆T‖
‖T‖

=
1

cond(T )
·

1− 1

1 +
‖T‖
‖∆T‖

 =

=
1

cond(T )
(1−O(∆T )) ,
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because, if ‖∆T‖ → 0, then
1

1 +
‖T‖
‖∆T‖

→ 0. 2

4. The stability of Tx = b type equation with (T + ∆T )y = b + ∆b
type perturbation

We consider the following operator equations:

Tx = b (4.1)

and
(T + ∆T )y = b+ ∆b (4.2)

where b ∈ R(T ), b+ ∆b ∈ R(T + ∆T ).

Theorem 4.1. If ‖T+∆T‖ < 1, then for each solution y of the equation
(4.2) there exists a solution x0 of the equation (4.1) such that

‖y − x0‖
‖x0‖

≤ cond(T )
1− ‖T+∆T‖

·
(
‖∆b‖
‖b‖

+
‖∆T‖
‖T‖

)
Proof. Let y be a solution of the equation (4.2). From Tx = b it results
that there exists z ∈ N(T ) such that x = T+b + z. From T = TT+T, it
follows that z0 = (IX − T+T )y ∈ N(T ). We denote x0 = T+b + z0. Then
y − x0 = T+Ty − T+b ∈ R(T+) = R(T ∗), so y − x0 = T+T (y − x0).

From (4.1) and (4.2) it results that T (y−x0) = ∆b−∆Ty. Thus y−x0 =
T+T (y − x0) = T+∆b − T+∆Ty ⇒ y − x0 = T+∆b − T+∆T (y − x0) −
T+∆Tx0 ⇒

(IX + T+∆T )(y − x0) = T+(∆b−∆Tx0).

From the hypothesis, there exists (IX + T+∆T )−1 and

‖(I + T+∆T )−1‖ < 1
1− ‖T+∆T‖

.

Then
‖y − x0‖
‖x0‖

≤ 1
1− ‖T+∆T‖

‖T+‖ · ‖∆b−∆Tx0‖
‖x0‖

≤

cond(T )
1− ‖T+∆T‖

‖∆b‖+ ‖∆Tx0‖
‖T‖ · ‖x0‖

≤ cond(T )
1− ‖T+∆T‖

·
(
‖∆b‖
‖b‖

+
‖∆T‖
‖T‖

)
.

2
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5. The stability of ‖Tx − b‖ = inf
z∈X
‖Tz − b‖ type equation with

‖Ty − b− δb‖ = inf
z∈X
‖Tz − b− δb‖ type perturbation

We consider the following operator equations:

‖Tx− b‖ = inf
z∈X
‖Tz − b‖ (5.1)

and
‖Ty − b− δb‖ = inf

z∈X
‖Tz − b− δb‖ (5.2)

with b, b+ δb ∈ Y, b /∈ R(T )⊥.

Theorem 5.1. a) For each solution x of the equation (5.1) there exists a
solution y0 of the equation (5.2) such that

‖y0 − x‖
dist(x,N(T ))

≤ cond(T ) · ‖δb‖
‖TT+b‖

.

b) There exists a solution x0 of the equation (5.1) and there exists a solution
y0 of the equation (5.2) such that

‖y0 − x0‖
‖x0‖

≤ cond(T ) · ‖δb‖
‖TT+b‖

.

Proof. a) Let x ∈ X be a solution of the equation (5.1). Then x = T+b+z,
where z ∈ N(T ). Let y = x+ T+δb+ z′, where z′ ∈ N(T ). Then

‖Ty − b− δb‖ = ‖Tx+ TT+δb− b− δb‖ =

= ‖TT+(b+ δb)− b− δb‖ = inf
z∈X
‖Tz − b− δb‖,

so y is a solution of equation (5.2). We consider y0 = x + T+δb. It results
that

‖y0 − x‖ ≤ ‖T+‖ · ‖δb‖.

Since
‖x− z‖ = ‖T+b‖,

we deduce that

‖y0 − x‖
‖x− z‖

≤ ‖T
+‖ · ‖δb‖
‖T+b‖

= cond(T ) · ‖δb‖
‖T‖ · ‖T+b‖

≤ cond(T ) · ‖δb‖
‖TT+b‖

.

Then
‖y0 − x‖

dist(x,N(T ))
≤ ‖y0 − x‖
‖x− z‖

≤ cond(T ) · ‖δb‖
‖TT+b‖

.
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b) We take x0 = T+b and y0 = x0 + T+δb. Then

‖y0 − x0‖ ≤ ‖T+‖ · ‖δb‖ and ‖x0‖ = ‖T+b‖,

so

‖y0 − x0‖
‖x0‖

≤ ‖T
+‖ · ‖δb‖
‖T+b‖

= cond(T ) · ‖δb‖
‖T‖ · ‖T+b‖

≤ cond(T ) · ‖δb‖
‖TT+b‖

.

2

Theorem 5.2. a) For any solution x of the equation (5.1) and for any
solution y of the equation (5.2) we have

‖y − x‖
dist(x,N(T ))

≥ 1
cond(T )

· ‖TT
+δb‖
‖b‖

.

b) For any solution y of the equation (5.2) there exists a solution x0 of
the solution (5.1) such that

‖y − x0‖
‖x0‖

≥ 1
cond(T )

· ‖TT
+δb‖
‖b‖

.

Proof. Let x ∈ X be a solution of the equation (5.1) and y ∈ X a
solution of the equation (5.2). Then x = T+b + z, with z ∈ N(T ) and
y = T+b+T+δb+z′ = x+T+δb+z′, with z′ ∈ N(T ). Then T (y−x) = TT+δb
and

‖y − x‖ ≥ ‖TT
+δb‖
‖T‖

.

a) For z ∈ N(T ) we have

‖x− z‖ = ‖T+b‖ ≤ ‖T+‖‖b‖ ⇒ 1
‖x− z‖

≥ 1
‖T+‖‖b‖

⇒

1
dist(x,N(T ))

≥ 1
‖T+‖‖b‖

.

Therefore

‖y − x‖
dist(x,N(T ))

≥ ‖TT
=δb‖
‖T‖

· 1
‖T+‖‖b‖

=
1

cond(T )
· ‖TT

+δb‖
‖b‖

.

b) For x0 = T+b we have

‖x0‖ = ‖T+b‖ ≤ ‖T+‖‖b‖ ⇒ 1
‖x0‖

≥ 1
‖T+‖‖b‖

.

Hence

‖y − x0‖
‖x0‖

≥ ‖TT
+δb‖
‖T‖

· 1
‖T+‖‖b‖

=
1

cond(T )
· ‖TT

+δb‖
‖b‖

.

2



The stability of operator equations 163

6. The stability of ‖Tx − b‖ = inf
z∈X
‖Tz − b‖ type equation with

‖(T + ∆T )y− b− δb‖ = inf
z∈X
‖(T + ∆T )z− b− δb‖ type perturbation

We consider the equations

‖Tx− b‖ = inf
z∈X
‖Tz − b‖ (6.1)

and
‖(T + ∆T )y − b− δb‖ = inf

z∈X
‖(T + ∆T )z − b− δb‖ (6.2)

where b ∈ Y.
In this case, T + ∆T may fail to have closed range and then (T + ∆T )+

may not exist. We chose for study a particular case. Thus, we suppose that∥∥T+
∥∥ ‖∆T‖ < 1,

R(T + ∆T ) = R(T ) and N(T + ∆T ) = N(T ).

Then there exist the operators (I + T+∆T )−1, (I + ∆TT+)−1 and

(T + ∆T )+ = (I + T+∆T )−1T+ = T+(I + ∆TT+)−1.

Theorem 6.1. For each solution y of the equation (6.2) there exists a so-
lution x0 of the equation (6.1) such that

‖y − x0‖
‖x0‖

≤ cond(T )
1− ‖T+∆T‖

·
(
‖δb‖
‖TT+b‖

+
‖∆T‖
‖T‖

)
.

Proof. Let y be a solution of the equation (6.2). Then y = (T + ∆T )+(b+
δb) + z, where z ∈ N(T + ∆T ) = N(T ). Because T = TT+T, it results
that z0 = (I − T+T )y ∈ N(T ). We denote by x0 = T+b + z0. Then x0 is a
solution of the equation (6.1) and y−x0 = T+Ty−T+b ∈ R(T+) = R(T ∗).
Therefore y − x0 = T+T (y − x0).

We have y−x0 = (T + ∆T )+(b+ δb)−T+b+ z− z0. Since (T + ∆T )+ =
T+(I + ∆TT+)−1 it results that T (y − x0) = TT+(I + ∆TT+)−1(b +
δb) − TT+b ⇒ T+T (y − x0) = T+(I + ∆TT+)−1(b + δb) − T+b = (I +
T+∆T )−1T+(b+ δb)− T+b. Then

(I + T+∆T )(y − x0) = T+(b+ δb)− (I + T+∆T )T+b =

= T+(δb−∆TT+b) = T+(δb−∆Tx0).

From the hypothesis there exists (I + T+∆T )−1 and

‖(I + T+∆T )−1‖ < 1
1− ‖T+∆T‖

.
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Then
‖y − x0‖
‖x0‖

≤ 1
1− ‖T+∆T‖

‖T+‖ · ‖δb−∆Tx0‖
‖x0‖

≤

cond(T )
1− ‖T+∆T‖

‖δb‖+ ‖∆Tx0‖
‖T‖ · ‖x0‖

≤ cond(T )
1− ‖T+∆T‖

·
(
‖δb‖
‖Tx0‖

+
‖∆T‖
‖T‖

)
≤

≤ cond(T )
1− ‖T+∆T‖

·
(
‖δb‖
‖TT+b‖

+
‖∆T‖
‖T‖

)
.

2
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