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Abstract - Let H be a complex Hilbert space, R a unital ring associ-
ated to a R-module structure on the algebra B(H) of all bounded linear
operators on H and R a Clifford structure (of real dimension 2) on H. We
describe some properties which connect Clifford structure R with the R-
module structure in order to obtain {I, R(1), R(i),iR(1)R(i)} a basis of the
R-module structure on B(H).
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Introduction

In the following C is the field of complex numbers, H will be a complex
Hilbert space, B(H) the C*- algebra of all linear bounded operators on H
and H = H & H the Hilbert sum of the pair (H,H). In order to describe
the spectrum for a normal relation in H, J. Ph. Labrousse used in [2] the
following B(H )-module basis in B(H) = B(H & H):

=(a) o= (30) = (a o) = (0n) o

where 7 is the identity of H.

The aim of the paper is to show that the algebraic properties obtained
from the above description (which are used in [2] in order to associate the
spectrum of a normal relation in H with the Taylor-joint spectrum of a 3-
tuple of bounded operators on H) can be generally derived from a class of
Clifford structures R (of real dimension 2) on an arbitrary Hilbert space H
when R is connected in some way with a R-module structure on B(H) given
by an unital ring R.
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1. Clifford structures on H and R-module structure on B(H)

First we recall that a Clifford structure (of real dimension 2) on a complex
Hilbert space H is a real linear mapping R : C — B(H) into the space of
self adjoint operators on H that satisfies

R(2)* = |2|*I, I being the identity operator on H, z € C. (1.1)

Corresponding to (1.1) one finds the multiplication tables

R(1) RO | ROEA)
R(1) i RRQG) | RO
RG) |-RMRG) | I ~R(1)
RORD) | —R(3) R(1) 1
(1.2)
R(1) RG) [iRMR(Q)
R(1) I RMRQG) | 1iRQ)
RG) | -RMRQG) | I TiR(1)
iR(RG) | —iRG) | 1iRQ) I

We obviously have

alge{range R} = spc{l,R(1),R(),iR(1)R®1)}
— spe {T, R(1), R(3), RODR()} -

Remark 1.1. If H =H & H and I, J, K, L are the operator matrices in
H =H @ H as in (0), then putting R(1) = J, R(i) = K and R(a +if8) =
aR(1)+ BR(i) = aJ + K we obtain a Clifford structure on H based on the
multiplication table

J| K L
J I|—-iL| iK
K il I|—-iJ
L | —-iK| iJ 1

Indeed, for z = a +if,
R(2)? = (aR(1) + BR(1)* = (a® + B*) I + aBJK + aBKJ = |z|* L.

We can also observe that iJK = L as in (1.2) for R(1) = J, R(i) = K.

Obviously in this case, the B(H)-module basis {I, J, K, L} of B(H) can
be rewritten (using Clifford structure R given by R(1) = J, R(i) = K) as
{I,R(1), R(i),iR(1)R(i)}.

Now let H be a Hilbert space with B(H) having a R-module struc-
ture given by an unital ring R. The following definition describes a class
of Clifford structures on H related to this R-module structure in a way
corresponding to our purpose announced in Introduction.
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Definition 1.1. Let R be a Clifford structure on H and J = R(1), K =
R(i), L = iR(1)R(@i) as in (1.2). We say that the Clifford structure R on
H and a R-module structure on B(H) are connected if for every r € R the
following two properties hold:

(c1) r1 € {J K,L};

o —M2 (’I“Ml) if Ml 75 M2
(62) (TMl)MQ - { Ml (er) lf ]\41 — M2 fOT M17M2 E {J, K7 L}
Example 1.1. (e;) Let us consider H = H@&H, R = B(H), the canonical

. a b ra rb
R-module structure on B(H) given by r (c d> = <7“c rd> for

every (Z Z) € B(H), where a, b, ¢, d, r are contained in B(H) and
the Clifford structure given by

R(1):J:<gg>,R(i):K:(iOI_(i)I>7iJK:L:<(;Ig>

Let us prove that the above Clifford structure and the R-module struc-
ture on B(H) are connected. Firstly we can write,

(rUy) Uy = r(UUs) for every r € R and Uy, Us € B(H)
(rUy)Uy = Uy (rUs) for every Uy,Us € B(H) and r € {a1,by,c1,d1}

(a1 b
U, = < ) > . (1.3)

So, the following implication is true:

if

re {al,bl,cl,dl}/ and [Ul, UQ] =0= [T’UQ, Ul] =0. (1.4)
Indeed, we have (rUs) Uy = r (UyUy) = v (U1Us) = (rUy) U = UprUs.
If U; = < Zl Zl ) € {J,K,L}, then r € {a1,b1,c1,d1} for every

1 di
r € R = B(H) and Uy = I obviously verifies [U1,Us] = 0. So, by the
above implication (1.4), we deduce [rI,U] = 0 for every U € {J, K, L}
ie. rI € {J,K, L}, hence (c;) holds.
For My, Ms € {J, K, L} we have

r (M M) = (rMy) My = My (rMs) (1.5)
because for M; = ( Zl 21 ) € {J,K, L} we have r € {a1,b1,c1,d1}
1 d1

for every r € R = B(H).
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For My = My € {J, K,L} we deduce by (15), (TM1> M, = M (TMl).

If My # M5 and My, M, € {J, K, L}, then MyMs = —MsM;. Then
we have
T (MlMQ) =T (—Mng) = —-T (MQMl) .

So, by (1.5) we deduce (rM;) My = — (rMsz) My and (c2) is completely
proved.

(e2) Let H be a complex Hilbert space, R : C — B(H) a Clifford structure,
I the identity on H, J = R(1), K = R(i), L = iR(1)R(i). Let us
consider also the unital ring R C {J, K} = (alga{I, J, K, L})’, where
{ } denotes the commutant in B(H) and the R-module structure on
B(H) is given by multiplication in B(H).

The Clifford structure and this R-module structure are obviously con-
nected (Definition 1.1).

Remark 1.2. Let us consider the example (e1). It is well known that
{I,J,K, L} is a B(H)-module basis of B(H). We also recall that R(a+i8) =
aJ+FK defines a Clifford structure and R(1) = J, R(i) = K,iR(1)R(i) = L.
We will prove that this property is also true for an arbitrary Hilbert space H
and some R-module structure on B(H ) which are connected with a Clifford
structure (of real dimension 2) on H as in Definition 1.1.

2. Bases of R-module structures connected with Clifford structure
on B(H)

Let H be a complex Hilbert space, R an unital ring and a R-module struc-
ture on B(H ) connected with a Clifford structure R (of real dimension 2) on
H as in Definition 1.1. We recall the notations: I for the identity operator
on H, J=R(1), K = R(i), L =1iR(1)R(i).

Proposition 2.1. Let {I,J,K,L} C B(H) be the system corresponding to
R, the Clifford structure (of real dimension 2) connected with a R-module
structure on B(H). If U = uol + u1J 4+ ua K + usL is an element of the
R-module generated in B(H) by {I,J, K, L} with uy,u1,uz,us € R, then
upl, urJ, ue K, usL are uniquely given by U.

Proof. If U = ugl +u1J +us K +usL, we can perform a direct computation
by using (c1), (¢2), (1.2) and we obtain as in [2]

JUJ = upl +u1J — us K — usgl
KUK = ugl —u1J +us K — uglL (21)
LUL = ugl —u1J — us K 4+ usL.
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So we have
upl =3 (U+JUJ+ KUK + LUL)
wJ=3U+JUJ- KUK - LUL) 2.2)
uK =% (U - JUJ+ KUK — LUL) '
usL =+ (U—JUJ - KUK + LUL),

which completes the proof. ]

Definition 2.1. Consider a R-module structure on B(H) connected with a
Clifford structure R (of real dimension 2). The R-module structure is called
I-faithful if the following conditions are satisfied:

(fi) reR, rI=0=r=0
(f2) (rI)M =1rM for every M € {J,K,L} andr € R.

Proposition 2.2. Let us consider a R-module structure on B(H) connected
with a Clifford structure R (of real dimension 2) on H and I-faithful. Then
{I,J, K, L}, the system of operators associated to R, is a R-modul basis in
the R-module generated by {I,J, K, L}.

Proof. We have to prove that ug,u1,us,u3 € R are uniquely determined
by the property U = ugl + u1J + uaK + usL for a fixed U € B(H). By
the above proposition (the equalities (2.2)) uol, uiJ, ua K, ugL are uniquely
given by U. By Definition 2.1 we deduce

(rM)M = (rI)MM = (rI)M?* = rM? = I, for allr € R, M € {J, K, L}.
Multiplying the equalities (2.2) respectively by I, J, K, L we obtain, by the
above remark,

(U+JUJ+ KUK + LUL)
(UJ+JUJ —i(KUL — LUK))
(UK + KU —i(LUJ — JUL))
(UL+ LU —i(JUK — KUJ)).

(2.3)

S & & £
w [\ = o
~ o~~~
|
SN [N N

1
So, by condition (f;) in Definition 2.1, we obtain that wug,ui,us,us are
uniquely given by U. a

Now let H, B(H) be as above and J, K, L given by a Clifford structure
of real dimension 2 on H by the usual equalities J = R(1), K = R(i),
L =iR(1)R(i). We denote the linear mappings given by the second parts of
the equalities (2.3) as follows:

R;: B(H) — B(H), i=0,1,2,3,
Ro(U)=U+ JUJ + KUK + LUL
UJ+JU —i(KUL — LUK)
UK + KU —i(LUJ — JUL)
UL+ LU —i(JUK — KUJ),

R (U

)

(U)
Ry (U)
(U)

R3(U
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for every U € B(H).
A simple computation gives the inclusion

3
| range (RZ) c{J,KY ={I,J,K,LV. (2.4)
i=0

Let us also consider a R-module structure on B(H) and J, K, L given,

as above, by an arbitrary fixed Clifford structure R (of real dimension 2) on
H.

Proposition 2.3. Assume the above setting. If for every M € {J,K,L}

3
and r € R we have |J range (RZ> C RI and (rI)M = rM, then the R-

1=
module generated by {I,J,K,L} is B(H) i.e. {I,J,K,L} is a system of
generators for R-module structure on B(H).

Proof. By the hypothesis, for every U € B(H) there are u; € R, so that,
1~
uz-I = ZRZ(U), 1= O, 1, 2, 3.

On the other hand (u;I)M = u;M for i =0,1,2,3 and M € {J,K,L}. So,
by the definition of R; and u;, we deduce:

ul = iﬁo(U) = %(U +JUJ + KUK + LUL)

wJ = (wl)J= EE(U)J = %(U +JUJ - KUK — LUL)
wpK = (ul)K = %}A%;(U)K = i(U — JUJ + KUK — LUL)
usL = (usl)L = %E(U)L = %(U —JUJ - KUK + LUL).

Summing up these equalities, it results that for every U € B(H) there exist
ug, U1, U2, U3 € R such that

U=uyl +urJ +uoK 4+ uslL,

which concludes the proof. O
By Propositions 2.2 and 2.3 we deduce the following theorem.

Theorem 2.1. If H is a complex Hilbert space, R a Clifford structure of
real dimension 2 on H and {I,J, K, L} the canonical system associated to
R, then{I,J, K, L} is a basis of B(H) for every R-module structure of B(H)
connected with R, I-faithful and verifying

3
U rangeE C RI
i=0
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Proof. We can apply Propositions 2.2 and 2.3. O

Example 2.1. The example (e;) verifies the hypothesis of the above The-
orem 2.1. The example (ez) verifies the hypothesis of the above Theo-

3 N
rem 2.1 if and only if the unital subring R of B(H) verifies |J rangeR; C
i=0
R C {I,J,K,L} and the existence of such a R is an easy consequence of

3 —
(2.4) (the extremal cases being the unital ring generated by (J rangeR; or

i=0
{I,J,K,L}). So the conclusion of the above Theorem holds in these two

cases.

Indeed, it was proved that in both examples (e;) and (ez) the R-module
structure and Clifford structures which are considered are connected. Since
in both examples the R-module multiplication is given by the multiplication

in B(H), it follows that the R-module structures under consideration are I-
3 —~
faithful. The last property |J rangeR; C RI (the last condition in the

=0
in the hypothesis of the Theorem 2.1) is in both examples (e;) and (e2),
3 —
the inclusion |J rangeR; C R because R C B(H) and I is the identity
=0
on H. In the first case, i.e. example (e;), R C B(H) and the inclusion is

obvious. In the second case we considered example (e3) with the property
3 —

rangeR; C R C {I,J, K, L} and the inclusion is also obvious.
=0

K2
So we have:

(a1) For H = H & H, H complex Hilbert space and I = < g g >, J =

( g g >,K— ( ?I alI ),L— ( (;I 3_ > the well known result
(cf. [2]) that {I, J, K, L} is a basis of B(H) -module structure of B(H),
derived from a Clifford structure connected with the B(H)-module
structure.

(a2) For an arbitrary complex Hilbert space H, every Clifford structure R
of real dimension 2 on H, I the identity on H, J = R(1), K = R(i),
L =iR(1)R(i) give {I,J, K,L} a R-module basis of B(H) for every

3

unital subring R of B(H) verifying |J rangeR; C R C {I,.J,K,L}.
=0

1=
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3. The composition of operators on a complex Hilbert space en-
dowed with a Clifford structure

In this section we take a close look at the composition of two linear bounded
operators on a complex Hilbert space H when on H is given a Clifford struc-
ture of real dimension 2 which is connected with some R-module structure
I-faithful on B(H). In the following H will be a complex Hilbert space,
B(H) the algebra of all linear bounded operators on H and R : C — B(H)
a Clifford structure of real dimension 2, I the identity on H and J = R(1),
K = R(i), L =iR(1)R(i).

Let us consider a unital ring R and a R-module structure connected
3 —
with R, I-faithful on B(H) such that |J rangeR; C RI.
=0
If U,V € B(H) and

U=upl +uiJ +usK +usl, V =wvol +v1J+voK + v3L,

where u;,v; € R, i =0,1,2,3 are the coordinates of U, V in the R-module
basis {1, J, K, L} of B(H) (see the above Theorem 2.1), then the coordinates
(w;) of UV in the the same basis can be obtained by the action in R* of
some matrix of My(R). More precisely we obtain by computation (as in

[2]):

UuQ Ul U us Vo wo
(75} uQ iU3 —iUQ U1 . w1
(%) —iU3 Uuo iu1 (%] - w2
us iUQ —iu1 () V3 w3

i.e. the multiplication by U in B(H) has in the R-module basis {1, J, K, L}
of B(H), the following matrix T(U) € My(R):

uo ul us us
T(U) = Ul ‘uo iug —%UQ
U2 —1us Uuo 1uy
U3 ug  —iug U

Remark 3.1. To determine T'(U) we compute UV using {I,J,K,L} as
basis and multiplication table (1.2) for I, J, K, L, using that the R-module
structure is connected with R and I-faithful.

Proposition 3.1. Let us consider T : B(H) — My(R), U — T(U), where
T(U) is the matriz in the R-module basis {I,J, K, L} of B(H) of the R-linear
operator My, the multiplication by U on B(H). The map T is R-linear and
multiplicative.
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Proof. We have

Myy = MyMy ie T(UV)=T(U)T(V)
Mysy = My+Myie TU+V)=TU)+T(V)
M,y = My =M Myie TrU)=Tr1)TU)

r 0 0 0
0r 00
= 00 r 0 -T(U)=rT(U).
000 r
This concludes the proof. O
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