Annals of the University of Bucharest (mathematical series)
(Analele Universității Bucureşti. Matematică)
1 (LIX) (2010), 179–187

Clifford structures on a Hilbert space Hand bases for module structures on $\mathcal{B}(H)$

Mihai Şabac

Communicated by George Dinca

Dedicated to Professor Ion Colojoară on his 80th anniversary

Abstract - Let H be a complex Hilbert space, \mathcal{R} a unital ring associated to a \mathcal{R} -module structure on the algebra $\mathcal{B}(H)$ of all bounded linear operators on H and R a Clifford structure (of real dimension 2) on H. We describe some properties which connect Clifford structure R with the \mathcal{R} -module structure in order to obtain $\{I, R(1), R(i), iR(1)R(i)\}$ a basis of the \mathcal{R} -module structure on $\mathcal{B}(H)$.

Key words and phrases : Clifford structures, Hilbert space.

Mathematics Subject Classification (2000) : 15A66, 15A30, 15A33.

Introduction

In the following \mathbb{C} is the field of complex numbers, \mathcal{H} will be a complex Hilbert space, $\mathcal{B}(\mathcal{H})$ the C^* - algebra of all linear bounded operators on \mathcal{H} and $H = \mathcal{H} \oplus \mathcal{H}$ the Hilbert sum of the pair $(\mathcal{H}, \mathcal{H})$. In order to describe the spectrum for a normal relation in \mathcal{H} , J. Ph. Labrousse used in [2] the following $\mathcal{B}(\mathcal{H})$ -module basis in $\mathcal{B}(\mathcal{H}) = \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$:

$$I = \begin{pmatrix} \mathcal{I} & 0 \\ 0 & \mathcal{I} \end{pmatrix}, J = \begin{pmatrix} 0 & \mathcal{I} \\ \mathcal{I} & 0 \end{pmatrix}, K = \begin{pmatrix} 0 & -i\mathcal{I} \\ i\mathcal{I} & 0 \end{pmatrix}, L = \begin{pmatrix} -\mathcal{I} & 0 \\ 0 & \mathcal{I} \end{pmatrix}, \quad (0)$$

where \mathcal{I} is the identity of \mathcal{H} .

The aim of the paper is to show that the algebraic properties obtained from the above description (which are used in [2] in order to associate the spectrum of a normal relation in \mathcal{H} with the Taylor-joint spectrum of a 3tuple of bounded operators on \mathcal{H}) can be generally derived from a class of Clifford structures R (of real dimension 2) on an arbitrary Hilbert space Hwhen R is connected in some way with a \mathcal{R} -module structure on $\mathcal{B}(H)$ given by an unital ring \mathcal{R} .

1. Clifford structures on *H* and *R*-module structure on $\mathcal{B}(H)$

First we recall that a *Clifford structure* (of real dimension 2) on a complex Hilbert space H is a real linear mapping $R : \mathbb{C} \to \mathcal{B}(H)$ into the space of self adjoint operators on H that satisfies

$$R(z)^2 = |z|^2 I$$
, I being the identity operator on $H, z \in \mathbb{C}$. (1.1)

Corresponding to (1.1) one finds the multiplication tables

	R(1)	R(i)	R(1)R(i)
R(1)	Ι	R(1)R(i)	R(i)
R(i)	-R(1)R(i)	Ι	-R(1)
R(1)R(i)	-R(i)	R(1)	-I

(1.2)

	R(1)	R(i)	iR(1)R(i)
R(1)	Ι	R(1)R(i)	iR(i)
R(i)	-R(1)R(i)	Ι	-iR(1)
iR(1)R(i)	-iR(i)	iR(1)	Ι

We obviously have

$$alg_{\mathbb{C}}\{range R\} = sp_{\mathbb{C}}\{I, R(1), R(i), iR(1)R(i)\}$$
$$= sp_{\mathbb{C}}\{I, R(1), R(i), R(1)R(i)\}.$$

Remark 1.1. If $H = \mathcal{H} \oplus \mathcal{H}$ and I, J, K, L are the operator matrices in $H = \mathcal{H} \oplus \mathcal{H}$ as in (0), then putting R(1) = J, R(i) = K and $R(\alpha + i\beta) = \alpha R(1) + \beta R(i) = \alpha J + \beta K$ we obtain a Clifford structure on H based on the multiplication table

	J	K	L
J	Ι	-iL	iK
K	iL	Ι	-iJ
L	-iK	iJ	Ι

Indeed, for $z = \alpha + i\beta$,

$$R(z)^{2} = (\alpha R(1) + \beta R(i))^{2} = (\alpha^{2} + \beta^{2})I + \alpha\beta JK + \alpha\beta KJ = |z|^{2}I.$$

We can also observe that iJK = L as in (1.2) for R(1) = J, R(i) = K.

Obviously in this case, the $\mathcal{B}(\mathcal{H})$ -module basis $\{I, J, K, L\}$ of $\mathcal{B}(H)$ can be rewritten (using Clifford structure R given by R(1) = J, R(i) = K) as $\{I, R(1), R(i), iR(1)R(i)\}$.

Now let H be a Hilbert space with $\mathcal{B}(H)$ having a \mathcal{R} -module structure given by an unital ring \mathcal{R} . The following definition describes a class of Clifford structures on H related to this \mathcal{R} -module structure in a way corresponding to our purpose announced in Introduction. **Definition 1.1.** Let R be a Clifford structure on H and J = R(1), K = R(i), L = iR(1)R(i) as in (1.2). We say that the Clifford structure R on H and a \mathcal{R} -module structure on $\mathcal{B}(H)$ are connected if for every $r \in \mathcal{R}$ the following two properties hold:

(c₁) $rI \in \{J, K, L\}';$ (c₂) $(rM_1) M_2 = \begin{cases} -M_2 (rM_1) & \text{if } M_1 \neq M_2 \\ M_1 (rM_1) & \text{if } M_1 = M_2 \end{cases}$ for $M_1, M_2 \in \{J, K, L\}.$

Example 1.1. (e_1) Let us consider $H = \mathcal{H} \oplus \mathcal{H}, \mathcal{R} = B(\mathcal{H})$, the canonical \mathcal{R} -module structure on $\mathcal{B}(H)$ given by $r\begin{pmatrix}a & b \\ c & d\end{pmatrix} = \begin{pmatrix}ra & rb \\ rc & rd\end{pmatrix}$ for every $\begin{pmatrix}a & b \\ c & d\end{pmatrix} \in \mathcal{B}(\mathcal{H})$, where a, b, c, d, r are contained in $\mathcal{B}(\mathcal{H})$ and

every $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{B}(H)$, where a, b, c, d, r are contained in $\mathcal{B}(\mathcal{H})$ and the Clifford structure given by

$$R(1) = J = \begin{pmatrix} 0 & \mathcal{I} \\ \mathcal{I} & 0 \end{pmatrix}, \ R(i) = K = \begin{pmatrix} 0 & -i\mathcal{I} \\ i\mathcal{I} & 0 \end{pmatrix}, \ iJK = L = \begin{pmatrix} -\mathcal{I} & 0 \\ 0 & \mathcal{I} \end{pmatrix}$$

Let us prove that the above Clifford structure and the \mathcal{R} -module structure on $\mathcal{B}(H)$ are connected. Firstly we can write,

$$(rU_1) U_2 = r (U_1 U_2)$$
 for every $r \in \mathcal{R}$ and $U_1, U_2 \in \mathcal{B}(H)$
 $(rU_1) U_2 = U_1 (rU_2)$ for every $U_1, U_2 \in \mathcal{B}(H)$ and $r \in \{a_1, b_1, c_1, d_1\}$

if

$$U_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}. \tag{1.3}$$

So, the following implication is true:

$$r \in \{a_1, b_1, c_1, d_1\}'$$
 and $[U_1, U_2] = 0 \Rightarrow [rU_2, U_1] = 0.$ (1.4)

Indeed, we have $(rU_2)U_1 = r(U_2U_1) = r(U_1U_2) = (rU_1)U_2 = U_1rU_2$. If $U_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \in \{J, K, L\}$, then $r \in \{a_1, b_1, c_1, d_1\}'$ for every $r \in \mathcal{R} = B(\mathcal{H})$ and $U_2 = I$ obviously verifies $[U_1, U_2] = 0$. So, by the above implication (1.4), we deduce [rI, U] = 0 for every $U \in \{J, K, L\}$ i.e. $rI \in \{J, K, L\}'$, hence (c_1) holds.

For $M_1, M_2 \in \{J, K, L\}$ we have

$$r(M_1M_2) = (rM_1) M_2 = M_1(rM_2)$$
(1.5)

because for $M_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \in \{J, K, L\}$ we have $r \in \{a_1, b_1, c_1, d_1\}'$ for every $r \in \mathcal{R} = B(\mathcal{H})$.

For $M_1 = M_2 \in \{J, K, L\}$ we deduce by (1.5), $(rM_1) M_1 = M_1 (rM_1)$. If $M_1 \neq M_2$ and $M_1, M_2 \in \{J, K, L\}$, then $M_1M_2 = -M_2M_1$. Then we have

$$r(M_1M_2) = r(-M_2M_1) = -r(M_2M_1).$$

So, by (1.5) we deduce $(rM_1) M_2 = -(rM_2) M_1$ and (c₂) is completely proved.

(e₂) Let *H* be a complex Hilbert space, $R : \mathbb{C} \to \mathcal{B}(H)$ a Clifford structure, *I* the identity on *H*, J = R(1), K = R(i), L = iR(1)R(i). Let us consider also the unital ring $\mathcal{R} \subset \{J, K\}' = (alg_{\mathbf{C}}\{I, J, K, L\})'$, where $\{ \}'$ denotes the commutant in $\mathcal{B}(H)$ and the \mathcal{R} -module structure on $\mathcal{B}(H)$ is given by multiplication in $\mathcal{B}(H)$.

The Clifford structure and this \mathcal{R} -module structure are obviously connected (Definition 1.1).

Remark 1.2. Let us consider the example (e_1) . It is well known that $\{I, J, K, L\}$ is a $\mathcal{B}(\mathcal{H})$ -module basis of $\mathcal{B}(H)$. We also recall that $R(\alpha + i\beta) = \alpha J + \beta K$ defines a Clifford structure and R(1) = J, R(i) = K, iR(1)R(i) = L. We will prove that this property is also true for an arbitrary Hilbert space H and some \mathcal{R} -module structure on $\mathcal{B}(H)$ which are connected with a Clifford structure (of real dimension 2) on H as in Definition 1.1.

2. Bases of \mathcal{R} -module structures connected with Clifford structure on $\mathcal{B}(H)$

Let H be a complex Hilbert space, \mathcal{R} an unital ring and a \mathcal{R} -module structure on $\mathcal{B}(H)$ connected with a Clifford structure R (of real dimension 2) on H as in Definition 1.1. We recall the notations: I for the identity operator on H, J = R(1), K = R(i), L = iR(1)R(i).

Proposition 2.1. Let $\{I, J, K, L\} \subset \mathcal{B}(H)$ be the system corresponding to R, the Clifford structure (of real dimension 2) connected with a \mathcal{R} -module structure on $\mathcal{B}(H)$. If $U = u_0I + u_1J + u_2K + u_3L$ is an element of the \mathcal{R} -module generated in $\mathcal{B}(H)$ by $\{I, J, K, L\}$ with $u_0, u_1, u_2, u_3 \in \mathcal{R}$, then u_0I, u_1J, u_2K, u_3L are uniquely given by U.

Proof. If $U = u_0I + u_1J + u_2K + u_3L$, we can perform a direct computation by using $(c_1), (c_2), (1.2)$ and we obtain as in [2]

$$JUJ = u_0I + u_1J - u_2K - u_3L KUK = u_0I - u_1J + u_2K - u_3L LUL = u_0I - u_1J - u_2K + u_3L.$$
(2.1)

So we have

$$u_0 I = \frac{1}{4} (U + JUJ + KUK + LUL)
u_1 J = \frac{1}{4} (U + JUJ - KUK - LUL)
u_2 K = \frac{1}{4} (U - JUJ + KUK - LUL)
u_3 L = \frac{1}{4} (U - JUJ - KUK + LUL),$$
(2.2)

which completes the proof.

Definition 2.1. Consider a \mathcal{R} -module structure on $\mathcal{B}(H)$ connected with a Clifford structure R (of real dimension 2). The \mathcal{R} -module structure is called I-faithful if the following conditions are satisfied:

$$(f_1)$$
 $r \in \mathcal{R}, rI = 0 \Rightarrow r = 0$

 (f_2) (rI)M = rM for every $M \in \{J, K, L\}$ and $r \in \mathcal{R}$.

Proposition 2.2. Let us consider a \mathcal{R} -module structure on $\mathcal{B}(H)$ connected with a Clifford structure R (of real dimension 2) on H and I-faithful. Then $\{I, J, K, L\}$, the system of operators associated to R, is a \mathcal{R} -modul basis in the \mathcal{R} -module generated by $\{I, J, K, L\}$.

Proof. We have to prove that $u_0, u_1, u_2, u_3 \in \mathcal{R}$ are uniquely determined by the property $U = u_0I + u_1J + u_2K + u_3L$ for a fixed $U \in \mathcal{B}(H)$. By the above proposition (the equalities (2.2)) u_0I , u_1J , u_2K , u_3L are uniquely given by U. By Definition 2.1 we deduce

 $(rM)M = (rI)MM = (rI)M^2 = rM^2 = rI$, for all $r \in \mathcal{R}$, $M \in \{J, K, L\}$.

Multiplying the equalities (2.2) respectively by I, J, K, L we obtain, by the above remark,

$$u_0 I = \frac{1}{4} (U + JUJ + KUK + LUL) u_1 I = \frac{1}{4} (UJ + JUJ - i(KUL - LUK)) u_2 I = \frac{1}{4} (UK + KU - i(LUJ - JUL)) u_3 I = \frac{1}{4} (UL + LU - i(JUK - KUJ)).$$
(2.3)

So, by condition (f_1) in Definition 2.1, we obtain that u_0, u_1, u_2, u_3 are uniquely given by U.

Now let H, $\mathcal{B}(H)$ be as above and J, K, L given by a Clifford structure of real dimension 2 on H by the usual equalities J = R(1), K = R(i), L = iR(1)R(i). We denote the linear mappings given by the second parts of the equalities (2.3) as follows:

$$\begin{split} & \widetilde{R_i} \colon \mathcal{B}(H) \to \mathcal{B}(H), \quad i = 0, 1, 2, 3, \\ & \widetilde{R_0}(U) = U + JUJ + KUK + LUL \\ & \widetilde{R_1}(U) = UJ + JU - \mathrm{i}(KUL - LUK) \\ & \widetilde{R_2}(U) = UK + KU - \mathrm{i}(LUJ - JUL) \\ & \widetilde{R_3}(U) = UL + LU - \mathrm{i}(JUK - KUJ), \end{split}$$

for every $U \in \mathcal{B}(H)$.

A simple computation gives the inclusion

$$\bigcup_{i=0}^{3} \operatorname{range}\left(\widetilde{R_{i}}\right) \subset \{J, K\}' = \{I, J, K, L\}'.$$
(2.4)

Let us also consider a \mathcal{R} -module structure on $\mathcal{B}(H)$ and J, K, L given, as above, by an arbitrary fixed Clifford structure R (of real dimension 2) on H.

Proposition 2.3. Assume the above setting. If for every $M \in \{J, K, L\}$ and $r \in \mathcal{R}$ we have $\bigcup_{i=0}^{3} \operatorname{range} \left(\widetilde{R_i}\right) \subset \mathcal{R}I$ and (rI)M = rM, then the \mathcal{R} module generated by $\{I, J, K, L\}$ is $\mathcal{B}(H)$ i.e. $\{I, J, K, L\}$ is a system of generators for \mathcal{R} -module structure on $\mathcal{B}(H)$.

Proof. By the hypothesis, for every $U \in \mathcal{B}(H)$ there are $u_i \in \mathcal{R}$, so that,

$$u_i I = \frac{1}{4} \widetilde{R}_i(U), \qquad i = 0, 1, 2, 3.$$

On the other hand $(u_i I)M = u_i M$ for i = 0, 1, 2, 3 and $M \in \{J, K, L\}$. So, by the definition of \widetilde{R}_i and u_i , we deduce:

$$u_0 I = \frac{1}{4} \widetilde{R_0}(U) = \frac{1}{4} (U + JUJ + KUK + LUL)$$

$$u_1 J = (u_1 I) J = \frac{1}{4} \widetilde{R_1}(U) J = \frac{1}{4} (U + JUJ - KUK - LUL)$$

$$u_2 K = (u_2 I) K = \frac{1}{4} \widetilde{R_2}(U) K = \frac{1}{4} (U - JUJ + KUK - LUL)$$

$$u_3 L = (u_3 I) L = \frac{1}{4} \widetilde{R_3}(U) L = \frac{1}{4} (U - JUJ - KUK + LUL).$$

Summing up these equalities, it results that for every $U \in \mathcal{B}(H)$ there exist $u_0, u_1, u_2, u_3 \in \mathcal{R}$ such that

$$U = u_0 I + u_1 J + u_2 K + u_3 L,$$

which concludes the proof.

By Propositions 2.2 and 2.3 we deduce the following theorem.

Theorem 2.1. If H is a complex Hilbert space, R a Clifford structure of real dimension 2 on H and $\{I, J, K, L\}$ the canonical system associated to R, then $\{I, J, K, L\}$ is a basis of $\mathcal{B}(H)$ for every \mathcal{R} -module structure of $\mathcal{B}(H)$ connected with R, I-faithful and verifying

$$\bigcup_{i=0}^{3} \operatorname{range} \widetilde{R_i} \subset \mathcal{R}I.$$

Proof. We can apply Propositions 2.2 and 2.3.

Example 2.1. The example (e_1) verifies the hypothesis of the above Theorem 2.1. The example (e_2) verifies the hypothesis of the above Theorem 2.1 if and only if the unital subring \mathcal{R} of $\mathcal{B}(H)$ verifies $\bigcup_{i=0}^{3} \operatorname{range} \widetilde{R_i} \subset \mathcal{R} \subset \{I, J, K, L\}'$ and the existence of such a \mathcal{R} is an easy consequence of (2.4) (the extremal cases being the unital ring generated by $\bigcup_{i=0}^{3} \operatorname{range} \widetilde{R_i}$ or $\{I, J, K, L\}'$). So the conclusion of the above Theorem holds in these two cases.

Indeed, it was proved that in both examples (e_1) and (e_2) the \mathcal{R} -module structure and Clifford structures which are considered are connected. Since in both examples the \mathcal{R} -module multiplication is given by the multiplication in $\mathcal{B}(H)$, it follows that the \mathcal{R} -module structures under consideration are *I*faithful. The last property $\bigcup_{i=0}^{3} \operatorname{range} \widetilde{R_i} \subset \mathcal{R}I$ (the last condition in the in the hypothesis of the Theorem 2.1) is in both examples (e_1) and (e_2) , the inclusion $\bigcup_{i=0}^{3} \operatorname{range} \widetilde{R_i} \subset \mathcal{R}$ because $\mathcal{R} \subset \mathcal{B}(H)$ and *I* is the identity on *H*. In the first case, i.e. example $(e_1), \mathcal{R} \subset \mathcal{B}(\mathcal{H})$ and the inclusion is obvious. In the second case we considered example (e_2) with the property $\bigcup_{i=0}^{3} \operatorname{range} \widetilde{R_i} \subset \mathcal{R} \subset \{I, J, K, L\}'$ and the inclusion is also obvious.

So we have:

- (a₁) For $H = \mathcal{H} \oplus \mathcal{H}$, \mathcal{H} complex Hilbert space and $I = \begin{pmatrix} \mathcal{I} & 0 \\ 0 & \mathcal{I} \end{pmatrix}$, $J = \begin{pmatrix} 0 & \mathcal{I} \\ \mathcal{I} & 0 \end{pmatrix}$, $K = \begin{pmatrix} 0 & -i\mathcal{I} \\ i\mathcal{I} & 0 \end{pmatrix}$, $L = \begin{pmatrix} -\mathcal{I} & 0 \\ 0 & \mathcal{I} \end{pmatrix}$ the well known result (cf. [2]) that $\{I, J, K, L\}$ is a basis of $\mathcal{B}(\mathcal{H})$ -module structure of $\mathcal{B}(\mathcal{H})$, derived from a Clifford structure connected with the $\mathcal{B}(\mathcal{H})$ -module structure.
- (a₂) For an arbitrary complex Hilbert space H, every Clifford structure R of real dimension 2 on H, I the identity on H, J = R(1), K = R(i), L = iR(1)R(i) give $\{I, J, K, L\}$ a \mathcal{R} -module basis of $\mathcal{B}(H)$ for every unital subring \mathcal{R} of $\mathcal{B}(H)$ verifying $\bigcup_{i=0}^{3} \operatorname{range} \widetilde{R_i} \subset \mathcal{R} \subset \{I, J, K, L\}'$.

3. The composition of operators on a complex Hilbert space endowed with a Clifford structure

In this section we take a close look at the composition of two linear bounded operators on a complex Hilbert space H when on H is given a Clifford structure of real dimension 2 which is connected with some \mathcal{R} -module structure I-faithful on $\mathcal{B}(H)$. In the following H will be a complex Hilbert space, $\mathcal{B}(H)$ the algebra of all linear bounded operators on H and $R: \mathbb{C} \to \mathcal{B}(H)$ a Clifford structure of real dimension 2, I the identity on H and J = R(1), K = R(i), L = iR(1)R(i).

Let us consider a unital ring \mathcal{R} and a \mathcal{R} -module structure connected with R, I-faithful on $\mathcal{B}(H)$ such that $\bigcup_{i=0}^{3} \operatorname{range} \widetilde{R_i} \subset \mathcal{R}I$.

If $U, V \in \mathcal{B}(H)$ and

$$U = u_0 I + u_1 J + u_2 K + u_3 L, \quad V = v_0 I + v_1 J + v_2 K + v_3 L,$$

where $u_i, v_i \in \mathcal{R}, i = 0, 1, 2, 3$ are the coordinates of U, V in the \mathcal{R} -module basis $\{I, J, K, L\}$ of $\mathcal{B}(H)$ (see the above Theorem 2.1), then the coordinates (w_i) of UV in the the same basis can be obtained by the action in \mathcal{R}^4 of some matrix of $\mathcal{M}_4(\mathcal{R})$. More precisely we obtain by computation (as in [2]):

$$\begin{pmatrix} u_0 & u_1 & u_2 & u_3 \\ u_1 & u_0 & iu_3 & -iu_2 \\ u_2 & -iu_3 & u_0 & iu_1 \\ u_3 & iu_2 & -iu_1 & u_0 \end{pmatrix} \begin{pmatrix} v_0 \\ v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

i.e. the multiplication by U in $\mathcal{B}(H)$ has in the \mathcal{R} -module basis $\{I, J, K, L\}$ of $\mathcal{B}(H)$, the following matrix $T(U) \in \mathcal{M}_4(\mathcal{R})$:

$$T(U) = \begin{pmatrix} u_0 & u_1 & u_2 & u_3 \\ u_1 & u_0 & \mathrm{i}u_3 & -\mathrm{i}u_2 \\ u_2 & -\mathrm{i}u_3 & u_0 & \mathrm{i}u_1 \\ u_3 & \mathrm{i}u_2 & -\mathrm{i}u_1 & u_0 \end{pmatrix}.$$

Remark 3.1. To determine T(U) we compute UV using $\{I, J, K, L\}$ as basis and multiplication table (1.2) for I, J, K, L, using that the \mathcal{R} -module structure is connected with \mathcal{R} and *I*-faithful.

Proposition 3.1. Let us consider $T : \mathcal{B}(H) \to \mathcal{M}_4(\mathcal{R}), U \mapsto T(U)$, where T(U) is the matrix in the \mathcal{R} -module basis $\{I, J, K, L\}$ of $\mathcal{B}(H)$ of the \mathcal{R} -linear operator M_U , the multiplication by U on $\mathcal{B}(H)$. The map T is \mathcal{R} -linear and multiplicative.

Proof. We have

$$M_{UV} = M_U M_V \text{ i.e. } T(UV) = T(U)T(V)$$

$$M_{U+V} = M_U + M_V \text{ i.e. } T(U+V) = T(U) + T(V)$$

$$M_{rU} = M_{rIU} = M_{rI}M_U \text{ i.e. } T(rU) = T(rI)T(U)$$

$$= \begin{pmatrix} r & 0 & 0 & 0 \\ 0 & r & 0 & 0 \\ 0 & 0 & r & 0 \\ 0 & 0 & 0 & r \end{pmatrix} \cdot T(U) = rT(U).$$

This concludes the proof.

Acknowledgments

The author thanks Daniel Beltiță for his useful remarks and help with typing. Partial financial support is acknowledged from the CNCSIS Grant ID-PCE 1905/538/2009.

References

- W. ARVERSON, The Dirac operator of a commuting d-tuple, J. Funct. Anal., 189 (2002), 53-79.
- [2] J.-Ph. LABROUSSE, The joint spectrum associated to a closed linear relation, preprint, 2009.
- [3] J.-PH. LABROUSSE, *Idempotent linear relations*, Spectral Analysis and Its Applications, Theta Ser. Adv. Math., vol. 2, pp. 129-149, Theta, Bucharest, 2003.
- [4] J.-PH. LABROUSSE, Les opérateurs quasi Fredholm: une généralisation des opérateurs semi Fredholm, Rend. Circ. Mat. Palermo (2), 29 (1980), 161-258.

Mihai Şabac

University of Bucharest, Faculty of Mathematics and Computer Science 14 Academiei Street, 010014 Bucharest, Romania E-mail: msabac@shaw.ca