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1. If one would make a rigorous selection from the works devoted to
linear operator theory, then, for sure, the article [9] of Erret Bishop deserves
to stay in line with the classical references of this domain. Together with
[8] they represent the only Bishop’s contributions (made at the beginning
of his mathematical career) to the domain of abstract spectral analysis of
linear operators.

The studies of this gifted mathematician dedicated to a variety of topics
(from rational approximation theory and uniform algebras, interpolation
theory and several complex variables, to the reevaluation of mathematical
analysis on constructive grounds) produced deep theorems and original new
paths of thought. Bishop was in his heart an analyst endowed with that
global understanding and intuition of the fundamentals facts that go further
than a simple usage of the technical tools. He died prematurely, after a long
period of silence, in 1983.

It is not our aim to present the mathematical work of Erret Bishop. We
confine ourselves to offer a succinct analysis of the paper [9] as a moment of
synthesis and a starting point for new vistas in the abstract theory of linear
operators.

1Text of a conference given by the author in 1988, at the Institute of Mathematics of
the University of Bucharest.
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2. Illustrating a general tendency of the post-war mathematics, the prob-
lems of classification and description of the internal structure of abstractly
defined classes of linear operators was a popular topics in the two decades
after the Second World War. Even though, as seen from today, the motiva-
tion for such researches is lost in the early periods of functional analysis or
quantum mechanics, some of the problems raised then have intrinsic value
and a long lasting life. Such a question makes the subject of the present
note.

To begin with we recall some well known fact about the classification
and structure of linear operators, or even finite rank matrices.

Let H be a Hilbert space of finite dimension and let us consider a linear
map T : H → H. The Jordan canonical form offers a complete classification
(up to similarity). More precisely, there exists a base of H (not necessary
orthonormal) with respect to which T is represented by the following matrix:

T ∼



λ 1 ... 0
λ 1 ...

... 1
λ

0 0 0

0

µ 1
µ 1

... 1
µ

0 0

0 0 ....

0 0 0

ν 1
ν 1

... 1
ν



. (1)

The complex numbers λ, µ, ..., ν (which are not necessary distinct) build
up the spectrum of T , σ(T ) = {λ ∈ C : λ − T is not invertible}. The
base of the space H for which the representation (1) is valid consists on the
generalized proper vectors. To be more precisely, each block from the matrix
(1) corresponds to the subspace of H generated by the vectors (λ− T )p−1ξ,
..., (λ− T )ξ, ξ, where (λ− T )pξ = 0. In this manner, the knowledge of the
solutions ξ ∈ H of the spectral problem

(λ− T )pξ = 0, λ ∈ C, p ≥ 1, (2)

completely determines the operator T .
The second well-known example of spectral decomposition that provides

a remarkable classification is connected with the self-adjoint operators. Let
us consider a separable complex Hilbert space and a bounded linear operator
A ∈ L(H). A is called self-adjoint if A = A∗. A classical result, proved
independently, at the beginning of the 20th century, by Hahn and Hellinger



The evolution of Erret Bishop’s ideas in abstract spectral theory 147

(see [34]), states that the operator A in unitarily equivalent to a canonical
model:

A ∼
N
⊕

k=1
Ak, H ∼=

N
⊕

k=1
L2(µk), (3)

where N ∈ N∪{∞}, Ak represents the multiplication by x ∈ R on the space
L2(µk), and µk is a positive Borel measure, having compact support on R.

Reducing at a single cell of the representation (3), i.e. at the operator Ak

(which is called cyclic), we note that there exists a bijective correspondence
between the class of unitary equivalence of Ak and the measure µk (up to a
natural mutual domination equivalence relation). Informally speaking, the
classification of cyclic self-adjoint operators means in fact the classification
of the Borel measures.

The attempt to represent self-adjoint operators in a base consisting of
(generalized) proper vectors fails for the simple reason that, in this case,
equation (2) could not possess enough many solutions. For example, the
multiplication by x ∈ R on the space L2([0, 1], dx) is an operator having no
generalized proper vectors. P. A. M. Dirac has solved this abnormality by
using some imaginary proper vectors which exist on the continuous spectrum
of the respective self-adjoint operator (see [14]). In the modern terminology
Dirac noted that the distributions of the form

u(x, y) = f(y)δ(x− y) ∈ D′
(R)

ˆ
⊗ L2(R, µk)

satisfy the equation

(λ−Ak)u = (λ− x)u(λ, x) = 0. (4)

Moreover, there are enough such proper distributions u so that the vec-
tors u(1) generate the domain of the given operator. If one knows enough
solutions in the distribution sense for equation (4), then the operator Ak

can be constructed and classified by the matrix associated to these elements
(method which is a precursor of the kernel distribution theory). This is the
framework in which, for the first time, Dirac’s distribution δ has appeared.

A classification similar with the one of self-adjoint operators is the one
for normal operators, appearing for instance in the work of von Neumann
(see [34]). A normal operator N consists of a pair of self-adjoint operators
which commute: N = A + iB, [A,B] = 0. In this case the measures from
(3) have compact supports in the complex plane; the same is valid for the
proper distributions (4).

The classification of commutating systems of self-adjoint operators is sim-
ilar. The existence of proper common distributions leads to a simultaneous
”diagonalization” of these operators and therefore to a classification of them.

3. The idea of diagonalization (and the inherent classification by this
method) of non self-adjoint operators by using proper distributions is wide-
spread starting with the coming into being and development of distribution



148 Mihai Putinar

and kernel distribution theory in the period 1950-1960. From this point of
view not only some special classes of differential operators (L. Garding, M.V.
Ked̂ış, B.M. Levitan, I.M. Gelfand - A.G. Kostyuchenko), but also some
classes of abstract linear operators (F.E. Brower, N. Dunford, I. Gohberg
- M.G. Krein, E. Nelson) have been studied. The monographs [7] and [26]
treat systematically the subject. Let us note that these attempts continue a
valuable classical tradition going back via the works of Titchmarsh [36] and
Weyl [38] to XIX-th century.

In order to present just one example, we recall that Brower [11] proves
a result that, in the context of the above considerations, can be stated in
the following way: let N ∈ L(H) be a normal operator and K ⊆ H a closed
subspace which is invariant for N . Then S = N |K (which is called subnormal
operator) can be diagonalized by a system of proper distributions of S∗.

Along the same lines, the Jordan model (1) of operators on finite di-
mensional spaces has been extended in several ways to operators on normed
spaces. Simply mention N. Dunford who has started the axiomatic study
of operators more general than the normal ones. These operators are called
spectral operators and they cover numerous examples imposed by applica-
tions (see [16] and [17]). Briefly, a (Dunford) spectral operator T = S + Q
has a quasinilpotent part Q, a scalar part S which commutes with Q and

S =
∫
C

zE(dz), (5)

where E is a measure (taking values on the set of bounded operators)
strongly continuous, having compact support in C and satisfying the fol-
lowing multiplication rule:

E(σ ∩ δ) = E(σ)E(δ), σ, δ ∈ Borel(C).

The representation (5) synthesizes the diagonalization of the scalar operator
S by the subspaces E(δ)H, δ ∈ Borel(C). It is obvious that each normal
operator is a scalar operator.

Among other facts formula (5) shows that the continuous analogue of the
space consisting of (generalized) proper vectors associated to a proper value
from the finite dimensional case is (in Dunford’s framework) a subspace
having the form E(δ)H corresponding to a Borel masurable subset δ of the
spectrum of T . This far reaching interpretation of proper vectors spaces was
essential for the development of the mathematical foundations of quantum
mechanics.

Notice two properties of the subspaces E(δ)H (called spectral subspaces):

σ(S,E(δj)H) ⊆ δj ,
∑

j

E(δj)H = H, (6)



The evolution of Erret Bishop’s ideas in abstract spectral theory 149

for each finite system (δj) of Borel sets which cover the complex plane.
An immediate observation, obtained exactly as in the case of normal op-

erators, shows that each scalar operator S has enough proper distributions.
More precisely, E(δ)H is the subspace generated by the vectors u(ϕ), where
u ∈ D′

(C, H), (S− z)u = 0, supp(u) ⊆ δ, ϕ ∈ D(C), δ being a closed subset
of C.

An exhaustive presentation of the theory of scalar and spectral operators
can be found in the monograph [17].

4. Chronologically speaking, at this moment Bishop’s thesis, which was
published in the articles [8] and [9], comes into light. Even though it seems
as having no connections with the above mentioned framework, the thesis
contains a synthesis (obtained by huge conceptualization steps) of the main
phenomenona concerning spectral decompositions. Bishop was able to con-
dense and explain in a couple of theorems all known results, plus a series of
facts judged at that time to be pathological. He has also clearly marked the
path for all future research in the domain.

Next we briefly analyze the contents of [9].
The author aims at ”seeking a spectral theory which will be valid inde-

pendently of any of the usual restrictions (such as normality or complete
continuity). It is, of course, not to be expected, in view of many known
counter examples, that such a theory will even approach in power the spec-
tral theory of a Hermitian or normal operator on a Hilbert space. In fact,
it is surprising that a spectral theory for an arbitrary operator exists at all.
The results obtained here are incomplete, but it seems likely that any spectral
theory which is valid for an arbitrary operator will be closely related to the
theory developed here.” ([9], page 379).

Now, more than 50 years after the publication of these prophetic words,
we can only admire and confirm their value.

Let T be a bounded linear operator on a Hilbert space H. One wants to
find subpaces of H which induce a decomposition of T based on the regions
of its spectrum as in (6). Bishop considers two natural choices for these
subspaces and we present below only one of them. Let F ⊆ C be a closed
set and M(F, T ) the kernel of the natural function JF (ξ) = [1⊗ ξ]:

0→M(F, T )→ H
JF→ OH(C \ F )/(z − T )OH(C \ F ). (7)

Here OH(U) denotes the Fréchet space of analytic functions on U taking
values in the Hilbert space H.

One can easily check that M(F, T ) = E(F )H, provided that T is a
normal or scalar operator with associated spectral measure E.

Bishop distinguishes four grades of spectral decompositions which are
called duality theories of type 1− 4. One of the main theorem of the paper
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states that each operator admits a duality theory of type 4, the other condi-
tions being more restrictive. By definition, an operator T admits a duality
theory of type 4 if the subspace

∑
j
M(Uj , T ) ⊆ H is dense in H, for each

finite cover (Uj) of C consisting of open sets.
It is Bishop’s merit to have discovered the connections between spectral

decomposition properties of the operator T and the behavior of the linear
function z − T ′

, where T
′

is the C-linear and continuous conjugate of T .
Bishop carries forth four kinds of behaviors for T

′
, named as conditions

(α)− (δ). The operator T
′

is said to satisfy condition (β) if the function

z − T ′
: OH(U)→ OH(U)

is injective and has closed range, for each open set U ⊆ C.
Theorem 5 of [9] asserts that an operator T admits a duality theory of

type 2 if T
′

satisfies condition (β).
A proof of this result can be obtained by considering the dual of the

exact sequence (7) and using the resolubility of the additive Cousin problem
with respect to the cover (Uj). The crucial points of the proof are the space
identification

[OH(U)/(z − T )OH(U)]
′ ∼= Ker(z − T : OH(U)

′ → OH(U)
′
)

and the remark that the second space contains the proper analytical func-
tionals u having support in a closed subset of U . Such a proper functional
inherits the division property:

u(1) = (λ− T )u(
1

λ− z
), λ /∈ U ,

therfore (JC−U )
′
u = u(1) ∈M(C− U, T ).

In other words, similarly to the phenomena presented above in the case of
proper distributions, one can deduce that the dual of an operator satisfying
condition (β) has enough many proper analytic functionals.

In this way one can see that the operators admitting a duality theory
of type 2 (or 3) have spectral decompositions of type (6) (with the second
condition relaxed).

In the final part of his paper Bishop put into practice his new results in
some situations which are difficult to deal by any other means.

5. Bishop did not continue his study of spectral decompositions and had
no collaborators to carry forward his ideas. The natural continuation of his
research was taken over by C. Foiaş who, among other things, inspired by
the duality theory of type 2, has introduced a new class of operators [23].
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To be more specific, an operator T ∈ L(H) is called decomposable if it
satisfies condition (β) and ∑

j

M(Uj , T ) = H,

provided that (Uj) is a finite cover of the complex plane with open sets.
The merit to continue Bishop’s ideas rests with Foiaş’s school. They

framed an abstract and comprehensive theory for spectral decompositions.
We mention here the remarkable contributions of C. Apostol, I. Bacalu, I.
Colojoară, Şt. Frunză, F. -H. Vasilescu etc. This first stage of development
of Foiaş group is amply recorded and comented in the monograph [17].

In the seventies decomposable operators gain maturity and respect, with
the twist that at that time almost all abstract theories were abandoned for
making room to the study of individual, concrete operators. We mention
only two instances, namely the papers of E. Albrecht - that bring a new
trend due to his discovery of pathological examples of decomposable oper-
ators [1] and his far reaching simplification of their definition [2] - and M.
Radjabalipour’s paper [31] which contains numerous open problems that
will guide the ulterior research work. A synthesis of the results concerning
decomposable operators can be found in F. -H. Vasilescu’s book [37].

Coming back to Bishop’s original idea, that is to study spectral decompo-
sitions in conjunction with duality, Şt. Frunză and M. Radjabalipour made
important progress. In the same time Frunză has initiated the axiomatic
study of spectral decompositions for systems of commuting operators [25].

Even though this presentation could be (and deserve to be) continued,
we shall stop here, not before inviting the reader that is eager for more
details to consult the reference list.

6. Some recent results (in 1988 !) fill the present picture of operators
satisfying Bishop’s condition (β). In particular, the problems stated at the
beginning of the present note, namely the classification and diagonalization
of operators by proper distributions, start to get a coherent answer for op-
erators satisfying condition (β). A variety of classes of operators that are
currently studied satisfy condition (β).

First it has been understood the significance of the condition (β) in
connection with the existence of extensions of the original operator to a
”better” one (a recurrent theme in operator theory). More precisely, it is
known that an operator satisfies condition (β) (respectively (β) on smooth
functions) if and only if it is the restriction of a decomposable operator
(respectively one possessing a functional calculus with smooth functions) on
a closed invariant subspace (see [4] and [22]).

Second, we have proved that an operator T is decomposable if and only
if T and T

′
satisfy condition (β) (see [27], [21]).
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According to an amazing observation originally stated for subnormal op-
erators (due to S. Brown) it was proved that an operator satisfying condition
(β) and having interior points into the spectrum has nontrivial invariant sub-
spaces (see [10] and [20]). Moreover, if an operator satisfying condition (β)
has interior point into the essential spectrum, then it has a lattice of invari-
ant subspace which is richer that the lattice of all closed subspaces of an
separable Hilbert space (see [3]).

All these facts disclose, as a confirmation of Bishop’s ideas, the richness of
the spectral theory of operators satisfying condition (β). The next step along
the lines presented above would be a classification of operators satisfying
condition (β) by their spectral data. A first step in this direction is the sheaf
model of an operator satisfying this very condition (this model is presented
in [29]). More precisely, the map

U → F(U) = OH(U)/(z − T )OH(U)

is an analytic sheaf of Fréchet spaces, supported by the spectrum of the
operator T . The multiplication by the variable z on the space of global
sections F(C) ∼= H can be identified with the action of the operator T on
H. This sheaf (which implicitly appears in Bishop’s thesis - see reference
[7]) synthesizes the spectral information about T . To give a simple example,
the operator T is decomposable if and only if the sheaf F is soft (see [29]).

For more restricted classes of operators satisfying condition (β) there
exist nowadays functional models and more elaborated classifications.

7. Finally, in order to resume the link to distribution theory, we mention
that abstract reformulations of the condition (β) lead to nontrivial results
concerning the division of vector valued distributions by analytic functions
(see [22]).

For instance, let us consider a space Ω endowed with a positive measure
and let us fix p ∈ [1,∞]. Then, the polynomial map

P (z, ω) : D′
(C)

ˆ
⊗ Lp(Ω)→ D′

(C)
ˆ
⊗ Lp(Ω),

where

P (z, ω) = zn + a1(ω)zn−1 + ...+ an(ω), aj ∈ L∞(Ω), 1 ≤ j ≤ n,

is onto.
Similarly, one can prove that the application

P (t, ω) : D′
(R)

ˆ
⊗ Lp(Ω)→ D′

(R)
ˆ
⊗ Lp(Ω)

is onto if and only if

ess− sup
ω∈Ω

(max{|Imλ|−1 : P (λ, ω) = 0, λ /∈ R}) <∞.

Some applications of these division lemmas are presented in the paper
[22] and one of its continuation.
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