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Abstract - Let µ be a compactly supported finite positive Borel measure
in the plane and for any t ∈ [1,∞) let P t(µ) be the closure in Lt(µ) of all
analytic polynomials. We show that the set {|p|t : p ∈ P t(µ)} is norm dense
in the positive cone of L1(µ) if and only if µ vanishes on the set abpe(P t(µ))
of all analytic bounded point evaluations of P t(µ). In the case when P t(µ)
is irreducible, µ is shown to have this property if and only if it is of the form
dµ = (|g|tdm) ◦ ψ∗−1 where m is the normalized Lebesgue measure on the
unit circle, ψ∗ is the boundary value of some univalent function ψ ∈ H∞
and g ∈ Ht is a cyclic vector for the analytic Toeplitz operator Tψ∗ on
the Hardy space Ht. As an application we show that a cyclic irreducible
subnormal operator S satisfies a Hartman-Wintner type spectral inclusion
condition if and only if it is unitarily equivalent to the multiplication by z
on the Hardy space H2(G) where G = σ(S)\σe(S).
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1. Introduction

Let µ be a positive finite Borel measure in the complex plane with compact
support. Let t ∈ [1,∞) and let P t(µ) denote the closure in Lt(µ) of all
analytic polynomials. A point λ ∈ C is said to be a bounded point evaluation
for P t(µ) if the mapping p 7→ p(λ) defined on polynomials extends to a
continuous linear functional on P t(µ). In this case, for each f ∈ P t(µ)
one denotes by f̂(λ) the value of this extension applied to f . The set of
all bounded point evaluations for P t(µ) is denoted by bpe(P t(µ)). A point
λ ∈ C is called an analytic bounded point evaluation for P t(µ) if there exists
an open disc U around λ such that U ⊂ bpe(P t(µ)) and moreover such that
for each f ∈ P t(µ) the mapping ζ 7→ f̂(ζ) is analytic on U . The set of
all analytic bounded point evaluations for P t(µ) is denoted by abpe(P t(µ)).
Basic facts about bounded point evaluations can be found in Sec. II.7 in [9].
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In this paper we are interested in the following approximation problem.
Find conditions under which every nonnegative function f ∈ L1(µ) can be
approximated in the L1(µ) norm by a sequence of the form {|pn|t}n≥1 where
each pn is an analytic polynomial. We shall provide a description of those
measures having this approximation property. In particular, it will follow
that a measure µ has this property if and only if it vanishes on its set of
analytic bounded point evaluations. Our proofs are essentially based on
the fundamental results of J. Thomson (see [17]) describing the analytic
structure of the spaces P t(µ). We also make use of the reduction to the unit
disc devised by R. Olin and L. Yang (see [13]).

As an application, we shall provide a characterization of those cyclic ir-
reducible subnormal operators for which their associated Toeplitz operators
enjoy a spectral inclusion property similar to the one appearing in the clas-
sical case that has been proved by P. Hartman and A. Wintner in [10]. We
show that every such operator S is unitarily equivalent to the multiplication
by z on the Hardy space H2(G) where G = σ(S)\σe(S).

2. Preliminaries

Let us consider a positive finite Borel measure µ with compact support in
the plane. The space P t(µ) is called pure if it does not have nontrivial Lt

summand. The space P t(µ) is said to be irreducible if it does not contain
nontrivial characteristic functions. If G ⊂ C is a bounded open set then
H∞(G) denotes the Banach algebra of all bounded analytic functions on G.
The following theorem summarizes the basic results from [17] that will be
needed in the sequel:

Theorem 2.1. (cf. [17]) Let µ be a compactly supported positive finite Borel
measure in the complex plane and let supp(µ) denote its closed support. Let
t ∈ [1,∞). Then there exists a Borel partition {∆n}n≥0 of supp(µ) such
that the space P t(µ) admits the direct sum decomposition

P t(µ) = Lt(µ0)⊕ (
⊕
n≥1

P t(µn))

(where µn is the restriction of µ to ∆n) such that for each n ≥ 1 the space
P t(µn) has the following properties:

(1) P t(µn) is irreducible;

(2) if Wn = abpe(P t(µn)), then Wn is a simply connected region and its
closure contains ∆n;

(3) the mapping f 7→ f̂ is one-to-one on P t(µn). Moreover, f = f̂ µn-a.e.
on Wn for every f ∈ P t(µn);
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(4) the mapping f 7→ f̂ implements an isometric isomorphism and a weak*
homeomorphism between the dual Banach algebras P t(µn) ∩ L∞(µn)
and H∞(Wn).

We shall also need several results from [13] that are summarized ln Theo-
rem 2.2 below. We first need some notations. Let t ∈ [1,∞). Let Nµ denote
the multiplication by z on Lt(µ) and let Sµ denote its restriction to P t(µ).
If µ is a measure such that P t(µ) is irreducible and G = abpe(P t(µ)) then
for each f ∈ H∞(G) one denotes by f̃ ∈ P t(µ) ∩ L∞(µ) its image under
the isomorphism between H∞(G) and P t(µ)∩L∞(µ) appearing in Theorem
2.1. In the case of the normalized Lebesgue measure m on the unit circle,
we shall employ the usual notation Ht (instead of P t(m)) for the classical
Hardy space on ∂D. Only in this case, the same letter will be used both for
the space of boundary values and for that of their analytic extensions, we
hope without confusion. For every ψ ∈ H∞(D) we shall denote by ψ∗ its
boundary value that is

ψ∗(eiθ) = lim
r→1

ψ(reiθ)

which exists m-a.e. on ∂D.
Let {Ω,B, µ} be a measure space and let B′ be a σ-algebra of subsets

of some set Ω′. If f : Ω → Ω′ is a measurable mapping then one denotes
by µ′ = µ ◦ f−1 the measure on Ω′ defined by µ′(σ) = µ(f−1(σ)) for every
σ ∈ B′ (the push-forward measure).

Theorem 2.2. (cf. [13]) Let t ∈ [1,∞) and let µ be a compactly supported
positive finite Borel measure in the plane such that P t(µ) is irreducible. Let
G = abpe(P t(µ)) and let ϕ : G → D be a conformal mapping onto the unit
disc and let ψ = ϕ−1 : D→ G. Let ν be the measure on the closed unit disc
defined by ν = µ ◦ ϕ̃−1. Then the following hold:

(1) |ϕ̃(ζ)| = 1 µ-a.e. on ∂G;

(2) the space P t(ν) is irreducible and abpe(P t(ν) = D;

(3) µ = ν ◦ ψ̃−1
(where ψ̃ ∈ P t(ν) ∩ L∞(ν) is the image of ψ under the

isomorphism appearing in Theorem 2.1);

(4) the mapping p 7→ p ◦ ψ̃ extends to a unitary operator (surjective isom-
etry) U : P t(µ)→ P t(ν);

(5) if Tψ̃ is the multiplication by ψ̃ on P t(ν) then Tψ̃U = USµ;

(6) ν restricted to ∂D is absolutely continuous with respect to the Lebesgue
measure and ψ̃ = ψ∗ ν-a.e. on ∂D;
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(7) the restriction to ∂D of the mapping ψ̃ is ν-a.e. one-to-one from a
carrier of ν|∂D onto a carrier of µ|∂G.

We shall now recall some elementary definitions related to Hardy spaces
and harmonic measures on bounded simply connected planar domains. Let
G be such a domain, let t ∈ [1,∞), and let α ∈ G. The Hardy space Ht(G)
is the set of all analytic functions f on G for which |f |t has a harmonic
majorant on G. If f ∈ Ht(G) and uf is the least harmonic majorant of |f |t,
then one denotes ‖f‖α = uf (α)1/t. It turns out that {Ht(G), ‖ · ‖α} is a
Banach space. If β ∈ G is another point, then the two corresponding norms
are equivalent. If ψ : D→ G is any conformal mapping with ψ(0) = α, then
the mapping W (f) = f ◦ψ implements an isometry from Ht(G) onto Ht(D)
such that TψW = WMz, where Tψ is the multiplication by ψ on Ht(D) and
Mz is the multiplication by z on Ht(G).

Suppose again that G is a bounded simply connected planar domain.
For each z ∈ G let ψz : D→ G be a conformal mapping such that ψz(0) = z
and let ωz = m ◦ ψ∗−1

z . Then ωz is a probability measure on ∂G and it
is called the harmonic measure of G at z. (This is only one of the several
equivalent definitions of the harmonic measure.) If z, w ∈ G then ωz and
ωw are mutually boundedly absolutely continuous, by Harnack’s inequality.
Suppose now that ωα is the harmonic measure of G at a fixed point α ∈ G.
Then for each f ∈ L1(ωα) the function

P[f ](z) =
∫
∂G
fdωz, z ∈ G

is harmonic on G and it gives the Perron-Wiener-Brelot solution of the
(generalized) Dirichlet problem for G. If f is continuous, then P[f ] extends
continuously to ∂G and its boundary value agrees with f everywhere on
∂G. Moreover, for each t ∈ [1,∞) we have that G ⊂ abpe(P t(ωα)) and the
mapping f 7→ P[f ] is an isometry from P t(ωα) onto a closed subspace of
the Hardy space Ht(G) when the latter is endowed with the ‖ · ‖α norm.
In particular this implies that the space P t(ωα) is irreducible. For a quick
introduction on Hardy spaces on planar domains and harmonic measures
see Sections V.9 and V.10 in [9].

3. The main result

The main result of this paper is the following:

Theorem 3.1. Let t ∈ [1,∞) and let µ be a compactly supported Borel pos-
itive finite measure in the plane. Let m be the normalized Lebesgue measure
on ∂D. The following are equivalent:

(1) P t(µ) is irreducible and µ(abpe(P t(µ))) = 0;
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(2) There exist a bounded simply connected planar domain G, a conformal
mapping ψ : D→ G and a function g ∈ Ht such that g is a cyclic vector
for the analytic Toeplitz operator Tψ∗ on Ht and such that µ = ν◦ψ∗−1

where dν = |g|tdm and ψ∗ ∈ L∞(m) stands for the nontangential
boundary value of ψ.

Moreover, if (2) holds true, then G = abpe(P t(µ)).

Proof. In this proof we shall freely use the notations and the results
from Theorems 2.1 and 2.2. The word unitary operator will mean a linear
surjective isometry.

(1)⇒ (2)
Suppose that P t(µ) is irreducible and that µ(G) = 0 whereG = abpe(P t(µ)).
Let ψ : D → G be a conformal mapping and let ψ∗ ∈ L∞(m) be its non-
tangential boundary value. Let ϕ = ψ−1 : G → D and let ν = µ ◦ ϕ̃−1.
Since |ϕ̃| = 1 µ-a.e. on ∂G and µ(G) = 0 it follows that ν(D) = 0 and
therefore supp(ν) ⊂ ∂D. From Theorem 2.2 we know that P t(ν) is irre-
ducible and that abpe(P t(ν) = D. Since P t(ν) is irreducible, ν is absolutely
continuous with respect to the Lebesgue measure on ∂D. Moreover, since
abpe(P t(ν)) = D it then follows from Szego’ Theorem that ν has the form
dν = hdm where h ∈ L1(m)+ with log h ∈ L1(m). It then follows that there
exists an outer function g ∈ Ht such that h = |g|t m-a.e. on ∂D.

Let us show that g is cyclic for Tψ∗ on Ht. For this purpose, recall
first that by Theorem 2.2 the mapping p 7→ p ◦ ψ̃ extends to a unitary
operator U : P t(µ) → P t(ν) such that Tψ̃U = USµ. Let Γ : P t(ν) → Ht

be defined by Γ(f) = fg for for every f ∈ P t(ν). Then Γ is isometric and
surjective (because g is outer) and SmΓ = ΓSν where Sm and Sν are the
corresponding shifts operators. In particular, since ψ̃ = ψ∗ ν-a.e., we have
Γ(p ◦ ψ̃) = (p ◦ ψ∗)g for every analytic polynomial p. Finally the mapping
V : P t(µ) → Ht defined as V = Γ ◦ U is therefore a unitary operator and
V p = (p ◦ψ∗)g for every polynomial p, which shows that g is a cyclic vector
for Tψ∗ . Moreover, since ψ̃ = ψ∗ ν-a.e. on ∂D it follows that µ has indeed
the form specified at (2).

(2)⇒ (1)
Suppose now that there exist a bounded simply connected domain G, a

conformal mapping ψ : D → G and g ∈ Ht such that g is a cyclic vector
for Tψ∗ on Ht and such that µ = ν ◦ ψ∗−1 where dν = |g|tdm. Let G1 =
abpe(P t(µ)). Since ψ is a conformal mapping we have that R(ψ∗) ⊂ ∂G
therefore µ(G) = 0 (R(f) stands for the essential range of f). It remains to
show that G = G1.

First, we see that the mapping p 7→ (p◦ψ∗)g can be extended to a unitary
operator V : P t(µ) → Ht such that Tψ∗V = V Sµ a fact that follows from
the definition of µ and the fact that g is cyclic for Tψ∗ . Since Tψ∗ is unitarily
equivalent to Sµ the map Θ(X) = V −1XV implements a Banach algebras
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isomorphism and a weak* homeomorphism between the commutants of Tψ∗
and Sµ respectively. Now, since ψ is univalent on D, and since the dual space
(Ht)∗ is spanned by the eigenvectors of S∗m, it follows that the commutant of
Tψ∗ coincides with the algebra of all analytic Toeplitz operators on Ht. On
the other hand, Theorem 2.1 implies that the commutant of Sµ on P t(µ),
which coincides with P t(µ) ∩ L∞(µ), is isometrically isomorphic with the
algebra H∞(G1). Then we see that the mapping Θ defined above induces
a dual Banach algebras isomorphism Θ̃ : H∞(G) → H∞(G1) such that
Θ̃(χG) = χG1

where χG(z) = z on G and similarily for G1. This easily
implies that G = G1. This finishes the proof of this implication and of the
theorem as well. 2

Corollary 3.1. Let t ∈ [1,∞) and let µ be a compactly supported finite pos-
itive Borel measure in the plane. Let G = abpe(P t(µ)). Then the following
are equivalent:

(1) µ(G) = 0;

(2) for every f ∈ Lt(µ)+ such that f(ζ) ≥ δ µ-a.e. for some δ > 0, there
exists g ∈ P t(µ) such that f = |g| µ-a.e.;

(3) for every f ∈ Lt(µ)+ there exists a sequence of analytic polynomials
{pn} such that ‖f − |pn|‖t → 0;

(4) for every f ∈ L1(µ)+ there exists a sequence of analytic polynomials
{pn} such that ‖f − |pn|t‖1 → 0;

(5) the convex hull of the set {|p|t | p analytic polynomial} is norm dense
in the positive cone of L1(µ);

(6) for every ε > 0 and every Borel subset σ ⊂ C with µ(σ) > 0 there
exists an analytic polynomial p such that∫

C\σ
|p|tdµ < ε

∫
σ
|p|tdµ.

Proof. We may assume, by virtue of Theorem 2.1, that P t(µ) is irreducible.
(1)⇒ (2) Suppose that µ(G) = 0. It then follows from Theorem 3.1 that

dµ = dν ◦ ψ∗−1 where ψ : D → G is a conformal mapping and dν = |g|tdm
where g ∈ Ht is a cyclic vector for Tψ∗ on Ht. Let f ∈ Lt(µ)+ such that
f(ζ) ≥ δ µ-a.e. for some δ > 0 and let y = (f ◦ψ∗)|g|. Then y ∈ Lt(m) and
log y ∈ L1(m) therefore there exists w ∈ Ht such that y = |w| m-a.e. Let
U : P t(µ)→ P t(ν) and Γ : P t(ν)→ Ht be the unitary operators appearing
in the proof of Theorem 3.1. Let x ∈ P t(µ) such that (Γ ◦ U)(x) = w. It is
then easy to see that |x| = f µ-a.e. on ∂G.

(2)⇒ (3) is obvious.
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(3)⇒ (4) follows from the fact that the mapping x 7→ |x|t is continuous
from Lt(µ) into L1(µ) when both spaces are endowed with their correspond-
ing norm topologies.

(4)⇒ (5) is obvious.
(5)⇒ (6) is obvious.
(6)⇒ (1)
It follows from [14, Lemma 2.3] that for any compact setK ⊂ abpe(P t(µ))

there exists cK > 0 such that∫
K
|f |tdµ ≤ cK

∫
supp(µ)\K

|f |tdµ

for every f ∈ P t(µ). This easily proves this implication as well.
2

Let us point out that, when t = 2, the equivalence between assertions
(4) and (6) holds true in a much more general situation in the context of the
factorization technique for integrable functions. This technique, initiated
in [7] in the context of Hilbert space contractions, has been subsequently
refined and extended in an abstract setting in [5] and it played a basic role
in the development of the theory of dual algebras.

It was proved in [17] that for any t ∈ [1,∞) and for every bounded simply
connected domain G there exists a measure µ supported on its closure such
that G = abpe(P t(µ)).

Corollary 3.2. Let t ∈ [1,∞) and let G be a bounded simply connected
planar domain. The following are equivalent:

(1) there exists a measure µ supported on ∂G with the property that G =
abpe(P t(µ));

(2) if ψ : D → G is any conformal mapping, then the analytic Toeplitz
operator Tψ∗ on Ht has a cyclic vector.

Proof. (1) ⇒ (2) Let ψ : D → G be any conformal mapping. Suppose
there exists a measure µ on ∂G such that G = abpe(P t(µ)). We may and
shall assume that P t(µ) is irreducible. It then follows from Theorem 3.1
that the analytic Toeplitz operator Tψ∗ has a cyclic vector.

(2) ⇒ (1) Conversely, assume that Tψ∗ has a cyclic vector g ∈ Ht. Let
dµ = (|g|tdm) ◦ ψ∗−1. It then follows from Theorem 3.1 and its proof that
µ is supported on ∂G and that G = abpe(P t(µ)).

2

The previous results can be used to provide a characterization of the
simply connected domains G for which the analytic polynomials are dense
in the Hardy space Ht(G).
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Corollary 3.3. Let G be a bounded simply connected domain in the complex
plane and let ωα be the harmonic measure of G relative to some point α ∈ G.
Let t ∈ [1,∞). The following are equivalent:

(1) the space P t(ωα) satisfies any of the six equivalent conditions from
Corollary 3.1;

(2) the analytic polynomials are dense in the Hardy space Ht(G).

Proof. It was shown in [15] that condition (2) above is equivalent to the fact
that G = abpe(P t(ωα)). Let G1 = abpe(P t(ωα)). To show that (1) ⇒ (2)
we only need to observe that, if ωα(G1) = 0, and G is a proper subset of
G1 then it would follow that ωα vanishes on a relatively open subset of ∂G.
This contradicts the fact that the support of the harmonic measure is the
whole boundary of G. The converse is obvious, again using the result from
[15] quoted above.

2

Simply connected domains G for which Mz is cyclic on Ht(G) have been
extensively studied in the literature, see for instance [1], [2], [3], [4], [8] and
the references therein.

4. Applications to subnormal operators

In this section we shall give an application of the results obtained above
to the study of subnormal operators on Hilbert spaces. We refer to the
monograph [9] for a comprehensive exposition of the theory of subnormal
operators. Let H be a separable Hilbert space and let B(H) denote the
algebra of all bounded linear operators on H. For each T ∈ B(H) one
denotes by σ(T ) its spectrum and by σe(T ) its essential (Calkin) spectrum.
Consider a subnormal operator S ∈ B(H) and let N ∈ B(K) be its minimal
normal extension. Let µ be a scalar valued spectral measure for N that
is, a probability measure in the plane which is equivalent to the spectral
measure of N . We therefore have a von Neumann algebras isomorphism
π : L∞(µ) → W ∗(N) such that π(z) = N , where W ∗(N) holds for the von
Neumann subalgebra of B(K) generated by N .

Let PH be the orthogonal projection of K onto H. Then one may de-
fine a mapping Φ : L∞(µ) → B(H) by Φ(ϕ)h = PH(π(ϕ)h) for ϕ ∈ L∞(µ)
and h ∈ H. One usually denotes Tϕ = Φ(ϕ) and Tϕ is called the (general-
ized) Toeplitz operator with symbol ϕ. This terminology is inspired by the
case when S is the unilateral shift on the Hardy space H2. In this case, a
well-known theorem of P. Hartman and A. Wintner [10] asserts that σ(Tϕ)
contains the essential range of ϕ for every ϕ ∈ L∞(m). Let us say that a
subnormal operator S ∈ B(H) has the Toeplitz spectral inclusion property
if σ(Tϕ) contains the essential range of ϕ for every ϕ ∈ L∞(µ). For instance,
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every analytic Toeplitz operator on H2 has this property. This is because
the minimal normal extension of every such operator with nonconstant sym-
bol is the corresponding multiplication operator on L2(m). This property
has been previously studied in [11] and [12]. It follows from the results in
[16] that if S is a subnormal operator with the Toeplitz spectral inclusion
property, then there exists a *-homomorphism

ρ : C∗{Tϕ : ϕ ∈ L∞(µ)} → L∞(µ)

such that ρ(Tϕ) = ϕ for every ϕ ∈ L∞(µ) and whose kernel is the closed
ideal generated by all the semi-commutators Tϕψ−TϕTψ with ϕ,ψ ∈ L∞(µ).
Moreover, it was proved in [11] that S has the spectral inclusion property if
and only if, for every Borel subset σ ⊂ C with µ(σ) > 0, we have ‖Tχσ‖ = 1
where χσ holds for the characteristic function of σ. When S = Sµ on P 2(µ),
this is obviously equivalent to condition (6) in Corollary 3.1.

Before going further, we recall a result of J. Bram [6] asserting that
for every cyclic subnormal operator S ∈ B(H) there exists a probability
Borel measure µ with compact support in the plane such that S is unitarily
equivalent to Sµ on P 2(µ). If S is also irreducible and G = abpe(P 2(µ)),
then G is a simply connected domain, σ(S) = Ḡ and σe(S) = ∂G (see [17]).
The results in the previous section allow us to prove the following:

Corollary 4.1. Let S ∈ B(H) be a cyclic irreducible subnormal operator.
Then S has the Toeplitz spectral inclusion property if and only if it is uni-
tarily equivalent to Mz on H2(G) where G = σ(S)\σe(S).

Proof. Since S is cyclic and irreducible, it can be represented as Sµ on
some irreducible space P 2(µ). Let G = abpe(P 2(µ)).

Suppose that Sµ has the Toeplitz spectral inclusion property. As pointed
above, µ satisfies condition (6) in Corollary 3.1. therefore µ(G) = 0. It now
follows from Theorem 3.1 and its proof that Sµ is unitarily equivalent to the
analytic Toeplitz operator Tψ∗ on H2 where ψ : D → G is some conformal
mapping. This Toeplitz operator is, at its turn, unitarily equivalent to Mz

on the Hardy space H2(G) when the latter is endowed with the norm ‖ · ‖α.
where α = ψ(0).

The converse follows from the fact that every analytic Toeplitz operator
on H2 has the Toeplitz spectral inclusion property. 2
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