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Abstract - In previous papers, a generalisation of the Weyl calculus was
introduced and studied, in connection with the quantization of a particle
moving in Rd under the influence of a variable magnetic field B. In the
present article we prove a criterion for the corresponding magnetic pseu-
dodifferential operators to be compact. We apply this criterion to the study
of the parametrix of an elliptic operator.
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1. Introduction

Let B be a magnetic field, i.e. a closed 2-form on Rd with components
Bjk(1 ≤ j, k ≤ d) of classBC∞(Rd); it can be written as the differential dA of
a 1-form A on Rd with components Aj(1 ≤ j ≤ d) of class C∞(Rd), for which
all the derivatives have polynomial growth. In a series of papers (see [3], [4],
[5], [1], [2]) a ‘magnetic pseudodifferential calculus’ was proposed; this is a
gauge covariant functional calculus (which is the Weyl calculus if B = 0),
i.e. a systematic procedure to associate to suitable ‘classical observables’
f (usually f belongs to Hörmander’s symbol classes Sm(Rd),m ∈ R) the
operators OAp (f) ∈ B(S(Rd)), defined by oscillatory integrals:

[OAp (f)u](y) :=
∫

R2d

ei(〈x−y,η〉−ΓA(x,y))f

(
x+ y

2
, η

)
u(y)dyd̄η, (1.1)

where d̄η := (2π)−ddη, u ∈ S(Rd), x ∈ Rd and ΓA(x, y) :=
∫

[x,y]A is the
circulation of A along the segment [x, y].

We use the notations and results of [1], where this ‘magnetic pseudodif-
ferential calculus’ was developed.

Let, for every s ∈ R, HsA be the magnetic Sobolev space defined in [1];
for every m, s ∈ R and f ∈ Sm(Rd) we have OAp (f) ∈ B(HsA,H

s−m
A ). The

first main result of this paper consists in the following theorem
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Theorem 1.1. Let s, t,m ∈ R and f ∈ Sm(Rd). We can choose two positive
integers N ′, N ′′ depending on s, t,m such that if the following hypothesis hold

i) m < s− t;

ii) we have

lim
|x|→∞

∂αx ∂
β
ξ f(x, ξ) = 0, ∀ξ ∈ Rd, α, β ∈ Nd, |α| ≤ N ′, |β| ≤ N ′′, (1.2)

then the operator OAp (f) : HsA → HtA is compact.

Let f ∈ Sm(Rd) be an elliptic symbol. As we know from [1], there exists
g ∈ S−m(Rd) such that

a := f#Bg − 1 ∈ S−∞(Rd), b := g#Bf − 1 ∈ S−∞(Rd), (1.3)

where f#Bg stands for the symbol of the composition OAp (f)◦OAp (g). OAp (g)
is an approximate inverse for OpA(f), called parametrix. Generally the
operators OAp (a) and OAp (b) are smoothing, but not compact. The next
main result is given by

Theorem 1.2. Let f ∈ Sm(Rd). Suppose that there exists a positive con-
stant c such that

|f(x, ξ)| ≥ c〈ξ〉m, for all x, ξ ∈ Rd. (1.4)

Then we can choose g, a, b in (1.3) such that for all s, t ∈ R, there exist the
positive integers N,N ′, N ′′ (depending on s, t,m), such that if the following
assumptions hold

lim
|x|→∞

|∂αB(x)| = 0, for all α ∈ Nd, |α| ≤ N (1.5)

and

lim
|x|→∞

∂αx ∂
β
ξ f(x, ξ) = 0, ∀ξ ∈ Rd, α, β ∈ Nd, 1 ≤ |α| ≤ N ′, |β| ≤ N ′′, (1.6)

then the operators OAp (a) : HsA → HtA and OAp (b) : HsA → HtA are compact.

In section 2 we study the boundedness (a result of Calderon and Vaillancourt
type) and compactness of a kind of operators more general than the one
defined in (1.1), which implies the Theorem 1.1 in the case s = t = 0.
Section 3 is dedicated to some properties of the magnetic composition. In
section 4 we provide the proof of Theorem 1.1 in the general case. The last
section is devoted to the study of a parametrix of an elliptic operator under
the assumptions of Theorem 1.2.
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2. Compactness of magnetic pseudodifferential operators

We are going to investigate the following operator (defined by an oscillatory
integral)

Tau(x) :=
∫

R2d

ei(〈x−y,ξ〉−ΓA(x,y))a(x, y, ξ)u(y)dyd̄ξ, x ∈ Rd, (2.1)

where u ∈ S(Rd) and a ∈ BC∞(R3d). We have Ta ∈ B(S(Rd)); in order to
prove that Ta ∈ B(L2(Rd)), we need the following lemma (see [1]).

Lemma 2.1. Let F (x, y, z) be the flux of the 2-form B through the triangle
[x− y + z, x− y − z, x+ y − z], that is

F (x, y, z) :=
∫

[x−y+z,x−y−z,x+y−z]
B, x, y, z ∈ Rd. (2.2)

Then ∇xF,∇yF and ∇zF are of the form D(x, y, z)y + E(x, y, z)z, where
D and E are d × d antisymmetrical matrices with components of class
BC∞(Rd). In addition, if

lim
|x|→∞

∂αBjk(x) = 0, for all 1 ≤ j, k ≤ d,

for an α ∈ Nd, then

lim
|x|→∞

(|∂αD(x, y, z)|+ |∂αE(x, y, z)|) = 0, for all y, z ∈ Rd.

Proposition 2.1. In the conditions above Ta ∈ B(L2(Rd)) and

‖Ta‖B(L2(Rd)) ≤M := C sup
x,y,ξ∈Rd,|α|≤2d+2,|β|≤3d+4

|∂αy ∂
β
ξ a(x, y, ξ)|, (2.3)

where C is a positive constant depending only on d.

Proof. The proof is quite standard. Choose χ ∈ C∞0 (R3d) with χ(0, 0, 0) =
1 and for ε ∈ [0, 1] define aε(x, y, ξ) := χ(εx, εy, εξ)a(x, y, ξ). It holds
limε↘0Kaε = Ka in S ′(R2d), where Kaε stands for the distribution ker-
nel of the operator Taε , 0 ≤ ε ≤ 1. The derivatives of aε are estimated via
the derivatives of a, uniformly with respect to ε, and therefore it is sufficient
to prove the estimate (2.3) for a ∈ S(R3d).

Using the operator 〈x−y〉−2p(1−∆ξ)p, with p =
[

3d
2

]
+2 and integrating

by parts we get

Tau(x) =
∫

Rd

(Pξu) (x)d̄ξ, u ∈ S(Rd), x, ξ ∈ Rd. (2.4)
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Here Pξ is an integral operator with the integral kernel

Pξ(x, y) := ei(〈x−y,ξ〉−ΓA(x,y))b(x, y, ξ),

b(x, y, ξ) := 〈x− y〉−2p(1−∆ξ)pa(x, y, ξ), x, y, ξ ∈ Rd.

It is obvious that Pξ ∈ B(L2(Rd)). We use now the Cotlar-Knapp-Stein
lemma in order to prove that there exists a function h : Rd × Rd → R such
that the following inequalities hold

‖PξP ∗η ‖B(L2(Rd)) ≤ h2(ξ, η), (2.5)

‖P ∗ξ Pη‖B(L2(Rd)) ≤ h2(ξ, η), (2.6)

for ξ, η ∈ Rd and
‖H‖B(L2(Rd)) ≤M, (2.7)

where H is the integral operator with the integral kernel h.
The Stokes formula and an integration by parts with the operator given

by 〈ξ − η〉−2q(1−∆z)q, q = d+ 1 allow us to see that the integral kernel of
the operator PξP ∗η is given by

Kξ,η(x, y) := ei(〈x,ξ〉−〈y,η〉−ΓA(x,y))·∫
Rd

ei〈z,η−ξ〉〈ξ − η〉−2q(1−∆z)q
[
e−iG(x,y,z)b(x, z, ξ)b(y, z, η)

]
dz,

(2.8)

for x, y, ξ, η ∈ Rd, where G(x, y, z) := F
(
x+z

2 , z−y2 , x−y2

)
. Using Lemma 2.1,

we notice that∫
Rd

|Kξ,η(x, y)|dy ≤ h2(ξ, η),
∫

Rd

|Kξ,η(x, y)|dx ≤ h2(ξ, η), x, y, ξ, η ∈ Rd,

(2.9)
with h(ξ, η) := M〈ξ− η〉−q, implying the estimates (2.5), (2.6) and (2.7). 2

The next result shows that under an additional assumption imposed on
a the operator Ta is compact.

Proposition 2.2. Let a ∈ BC∞(R3d). Assume that there exists t ∈ [0, 1]
such that

lim
|tx+(1−t)y|+|ξ|→∞

∂αy ∂
β
ξ a(x, y, ξ) = 0, ∀α, β ∈ Nd, |α| ≤ 2d+ 2, |β| ≤ 3d+ 4.

(2.10)
Then Ta is a compact operator on L2(Rd).
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Proof. Let χ ∈ C∞0 (R2d), χ(x, ξ) = 1 for |x| + |ξ| ≤ 1. Set χR(x, ξ) :=
χ
(
x
R ,

ξ
R

)
, R ≥ 1 and aR(x, ξ) := χR(tx+ (1− t)y, ξ)a(x, y, ξ). Using (2.10)

it follows
lim
R→∞

sup
R3d

∣∣∣∂αy ∂βξ [aR(x, y, ξ)− a(x, y, ξ)]
∣∣∣ = 0,

for all α, β ∈ Nd, |α| ≤ 2d+ 2, |β| ≤ 3d+ 4. Hence, by virtue of Proposition
2.1, limR→∞ TaR = Ta in B(L2(Rd)). Since the distribution kernel of the
operator TaR is a function from S(R2d), it yields that the operator TaR is
compact in L2(Rd). The proof is finished. 2

In order to apply this proposition to the operator OAp (f) appearing in
Theorem 1.1 we need the following elementary lemma

Lemma 2.2. Let a ∈ C(R2d) be a function which satisfies

i) for each x ∈ Rd the function a(x, ·) is continuous, uniformly with
respect to x;

ii) lim|x|→∞ a(x, ξ) = 0, for all ξ ∈ Rd;

iii) lim|ξ|→∞ a(x, ξ) = 0, uniformly with respect to x ∈ Rd.

Then lim|x|+|ξ|→∞ a(x, ξ) = 0.

Corollary 2.1. Theorem 1.1 holds true in the case s = t = 0, with N ′ =
2d+ 2, N ′′ = 3d+ 4.

Proof. We have OAp (f) = Ta, where a(x, y, ξ) := f
(x+y

2 , ξ
)
, x, y, ξ ∈ Rd.

Then a ∈ BC∞(R3d) if m < 0 and the formula (2.10) with t = 1
2 is a

consequence of (1.2), Lemma 2.2 and the fact that f ∈ Sm(Rd), m < 0. 2

3. Some properties of the magnetic composition

Let f and g be two symbols, f ∈ Sm(Rd), g ∈ Sm
′
(Rd), m,m′ ∈ R. As

we know from [1], OAp (f) ◦OAp (g) = OAp (f#Bg), where the symbol f#Bg ∈
Sm+m′(Rd) is defined by the oscillatory integral

(f#Bg)(X) :=
∫

R4d

e−2i[Y,Z]ωB(x, y, z)f(X − Y )g(X − Z)d̄Y d̄Z, (3.1)

where X = (x, ξ), Y = (y, η), Z = (z, ζ), x, y, z, ξ, η, ζ ∈ Rd, [Y,Z] =
〈η, z〉 − 〈ζ, y〉, d̄Y = π−ndydη, d̄Z = π−ndzdζ, ωB(x, y, z) = e−iF (x,y,z) (F is
defined in Lemma 2.1).

Set N1 = N2 :=
[
d
2

]
+ 1, N3 :=

[
d+m+

2

]
+ 1, N4 :=

[
d+m′+

2

]
+ 1, where

m± := max(±m, 0).



116 Viorel Iftimie

Proposition 3.1. Assume that there exist p, q ∈ N such that the following
hypothesis hold true

i) lim|x|→∞ |∂αB(x)| = 0, for all α ∈ Nd, |α| ≤ p+ 1 + 2(N3 +N4).

ii) lim|x|→∞ ∂αx ∂
β
ξ f(x, ξ) = 0, for all α, β ∈ Nd, 1 ≤ |α| ≤ 2N4 + 1 +

p, |β| ≤ 2N2 + q.

iii) lim|x|→∞ ∂αx ∂
β
ξ g(x, ξ) = 0, for all α, β ∈ Nd, 1 ≤ |α| ≤ 2N3 + 1 +

p, |β| ≤ 2N1 + q.

Then we have the identity

f#Bg = fg + r, r ∈ Sm+m′−1(Rd) (3.2)

and

lim
|x|→∞

∂γx∂
δ
ξr(x, ξ) = 0, for all ξ ∈ Rd, γ, δ ∈ Nd, |γ| ≤ p, |δ| ≤ q. (3.3)

Proof. We use the identity h(1) = h(0) +
∫ 1

0 h
′(t)dt with h(t) := f(X −

tY )g(X − tZ), X,Y, Z ∈ R2d and integrate by parts in order to get the
equation (3.2), with

r(X) = − 1
2i

∫ 1

0
dt
∫

R4d

e−2i[Y,Z]L1L2L3L4R(t,X, Y, Z)d̄Y d̄Z, (3.4)

where L1 = 〈y〉−2N1(1−1
4∆ζ)N1 , L2 = 〈z〉−2N2(1−1

4∆η)N2 , L3 = 〈η〉−2N3(1−
1
4∆z)N3 , L4 = 〈ζ〉−2N4(1− 1

4∆y)N4 and

R(t,X, Y, Z) = ωB(x, y, z)[2t〈(∇xf)(X − tY ), (∇ξg)(X − tZ)〉
− 2t〈(∇ξf)(X − tY ), (∇xg)(X − tZ)〉
− i〈(∇ξf)(X − tY ), (∇zF )(x, y, z)〉g(X − tZ)
+ if(X − tY )〈(∇yF )(x, y, z), (∇ξg)(X − tZ)〉].

We deduce the formula (3.3) by a careful examination of the integral (3.4),
where we use the hypothesis i)− iii), the Lemma 2.1, some additional inte-
grations by parts in order to eliminate the terms of the form yαzβ, α, β ∈ Nd

and the dominated convergence theorem. 2

In a similar way we obtain the following result

Proposition 3.2. Assume that there exist p, q ∈ N such that

i) lim|x|→∞ ∂αx ∂
β
ξ f(x, ξ) = 0, for all α, β ∈ Nd, |α| ≤ 2N4 + p, |β| ≤

2(N2 +N3 +N4) + p+ q

or
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i’) lim|x|→∞ ∂αx ∂
β
ξ g(x, ξ) = 0, for all α, β ∈ Nd, |α| ≤ 2N3 + p, |β| ≤

2(N1 +N3 +N4) + p+ q.

Then

lim
|x|→∞

∂γx∂
δ
ξ (f#Bg)(x, ξ) = 0, for all ξ ∈ Rd, γ, δ ∈ Nd, |γ| ≤ p, |δ| ≤ q. (3.5)

4. Compactness in magnetic Sobolev spaces

In this section we give the proof of Theorem 1.1 for arbitrary s, t ∈ R; in
the case s = t = 0 this was achieved in Corollary 2.1. Let {sr}r∈R be
the family of symbols considered in [2]; we have sr ∈ Sr(Rd), s0 = 1 and
sr#Bs−r = 1. Then a = s−t#Bb#Bsr, where b = st#Ba#Bs−r ∈ Sm(Rd),
m := m + t − r < 0. We have OAp (sr) ∈ B(HpA,H

p−r
A ), for any p ∈ R and

the desired conclusion yields if we prove that OAp (b) is a compact operator
of L2(Rd). This fact is a consequence of Corollary 1.1 if we check that

lim
|x|→∞

∂αx ∂
β
ξ b(x, ξ) = 0, ∀α, β ∈ Nd, |α| ≤ N ′0 := 2d+ 2, |β| ≤ N ′′0 := 3d+ 4,

(4.1)
and this will follow from Proposition 3.2, with appropriate choices forN ′, N ′′.
We have

lim
|x|→∞

∂γx∂
δ
ξ (st#

Ba)(x, ξ) = 0, ∀γ, δ ∈ Nd, |γ| ≤ N ′0, |β| ≤ N
′′
0, (4.2)

where N ′0 = N ′−2Ñ3, N ′′0 = N ′′−N ′−2(Ñ1 + Ñ4) and Ñ1 = Ñ2 =
[
d
2

]
+ 1,

Ñ3 =
[
d+t+

2

]
+ 1, Ñ4 =

[
d+m+

2

]
+ 1. Finally, in order to get (4.1), we

need N ′0 = N
′
0 − 2N4, N ′′0 = N

′′
0 − N

′
0 − 2(N2 + N3), where N1 = N2 =[

d
2

]
+ 1, N3 =

[
d+(m+t)+

2

]
+ 1, N4 =

[
d+r−

2

]
+ 1.

The right choices for N ′ and N ′′ are N ′ = N ′0 + 2(Ñ3 + N4) and N ′′ =
2N ′0 +N ′′0 + 2(Ñ1 + Ñ3 + Ñ4 +N2 +N3 + 2N4). The Theorem 1.1 is proved.

5. The parametrix of an elliptic operator

Lemma 5.1. Let f ∈ Sm(Rd) and assume that the hypothesis (1.4), (1.5)
and (1.6) hold with N = N0 := 2d+ 2 + 2(N3 +N4), N ′ = N

′
0 := 2d+ 2 +

2N4 + 1 and N
′′ = N

′′
0 := 3d + 4 + 2N2, where N1 = N2 =

[
d
2

]
+ 1, N3 =

N4 =
[
d+|m|

2

]
. Then there exists g0 ∈ S−m(Rd) such that r := f#Bg0 − 1 ∈

S−1(Rd), r′ := g0#Bf − 1 ∈ S−1(Rd) and OAp (r) and OAp (r′) are compact
operators on L2(Rd).
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Proof. Set g0 := 1
f ; then g0 ∈ S−m(Rd) and it satisfies the condition (1.6)

with the same N ′0, N
′′
0. Proposition 3.1 leads us to

lim
|x|→∞

∂γx∂
δ
ξr(x, ξ) = 0, ∀ξ ∈ Rd,∀γ, δ ∈ Nd, |γ| ≤ 2d+ 2, |δ| ≤ 3d+ 4.

We conclude by invoking Corrolary 2.1. 2

Lemma 5.2. Let p, q ∈ N and f ∈ Sm(Rd). Assume that the hypothesis
(1.4), (1.5) and (1.6) hold with N = N0 := 3d+ 7 + 2[|m|] + p, N ′ = N ′0 :=
2d + 6 + 2[|m|] + p and N

′′ = N ′′0 := 4d + 10 + p + q. Then there exist
g′, g′′ ∈ S−m(Rd) and r′, r′′ ∈ S−∞(Rd) such that

r′ = f#Bg′ − 1, r′′ = g′′#Bf − 1,

lim
|x|→∞

∂γx∂
δ
ξr
′(x, ξ) = 0, for all ξ ∈ Rd, γ, δ ∈ Nd, |γ| ≤ p, |δ| ≤ q (5.1)

and

lim
|x|→∞

∂γx∂
δ
ξr
′′(x, ξ) = 0, for all ξ ∈ Rd, γ, δ ∈ Nd, |γ| ≤ p, |δ| ≤ q. (5.2)

Proof. We use the notations from the previous lemma: g0 := 1
f ∈ S

−m(Rd)
and r := f#Bg0 − 1 ∈ S−1(Rd). Set rk = r#Br#B . . .#Br (k factors).
Then rk ∈ S−k(Rd), rk+1 = rk#Br and it is easy to prove by induction,
using Proposition 3.1 (for r) and Proposition 3.2 (for rk#Br) that

lim
|x|→∞

∂γx∂
δ
ξrk(x, ξ) = 0, ∀ξ ∈ Rd, ∀k ≥ 1, ∀γ, δ ∈ Nd, |γ| ≤ p, |δ| ≤ q. (5.3)

Let ψ ∈ C∞0 (Rd) with ψ(ξ) = 1 for |ξ| ≤ 1 and consider a sequence
(tk)k≥1, tk ∈ R, tk ↗ ∞ as k → ∞ so rapidly such that the series

∑∞
k=1 sk

converge in S−1(Rd), where sk(x, ξ) := (−1)k(1−ψ)
(
ξ
tk

)
rk(x, ξ). The sum

s of this series satisfies

lim
|x|→∞

∂γx∂
δ
ξs(x, ξ) = 0, ∀ξ ∈ Rd, ∀γ, δ ∈ Nd, |γ| ≤ p, |δ| ≤ q. (5.4)

If we choose g′ := g0#B(1 + s) and define r′ := f#Bg′ − 1, we get the
equation (5.1) fulfilled. The statements regarding g′′ and r′′ are proved in a
similar way. 2

Proof of Theorem 1.2. In the setting of Lemma 5.2, let us denote ∆ :=
g′ − g′′ ∈ S−m(Rd). We also have

∆ = g′′#Br′ − r′′#Bg′ ∈ S−∞(Rd), (5.5)
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and via Proposition 3.2

lim
|x|→∞

∂αx ∂
β
ξ ∆(x, ξ) = 0, ∀ξ ∈ Rd, ∀α, β ∈ Nd, |α| ≤M ′, |β| ≤M ′′, (5.6)

where M ′ = p− 2− 2
[
d+m−

2

]
, M ′′ = q − p− 4− 4

[
d
2

]
. Notice that

g′#Bf = 1 + r′′ + ∆#Bf. (5.7)

We have ∆#Bf ∈ S−∞(Rd) and by Proposition 3.2,

lim
|x|→∞

∂αx ∂
β
ξ (∆#Bf)(x, ξ) = 0, ∀ξ ∈ Rd,∀α, β ∈ Nd, |α| ≤M ′, |β| ≤M ′′,

(5.8)
where M ′ = p − 4 − 2

([
d+m+

2

]
+
[
d+m−

2

])
, M ′′ = q − 2p − 6 − 8

[
d
2

]
+

2
[
d+m−

2

]
.

Set g := g′, a := r′, b := r′′+∆#Bf and choose N = N0, N
′ = N ′0, N

′′ =
N ′′0 (with N0, N

′
0, N

′′
0 defined in Lemma 5.2). The numbers p, q are chosen

large enough such that M ′ ≥ N ′, M ′′ ≥ N ′′ (with N ′ and N ′′ from Theorem
1.1 where m = −∞). The proof is finished.
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