Annals of the University of Bucharest (mathematical series) (Analele Universității București. Matematică) 1 (LIX) (2010), 111–119

Compact magnetic pseudodifferential operators

Viorel Iftimie

To Professor Ion Colojoară on the occasion of his 80th birthday

Abstract - In previous papers, a generalisation of the Weyl calculus was introduced and studied, in connection with the quantization of a particle moving in \mathbb{R}^d under the influence of a variable magnetic field B. In the present article we prove a criterion for the corresponding magnetic pseudodifferential operators to be compact. We apply this criterion to the study of the parametrix of an elliptic operator.

Key words and phrases : magnetic pseudodifferential operators, compactness, elliptic operators, parametrix.

Mathematics Subject Classification (2000) : 35S05, 47G30, 81Q99.

1. Introduction

Let B be a magnetic field, i.e. a closed 2-form on \mathbb{R}^d with components $B_{jk}(1 \leq j, k \leq d)$ of class $B\mathcal{C}^{\infty}(\mathbb{R}^{d})$; it can be written as the differential dA of a 1-form A on \mathbb{R}^d with components A_j ($1 \leq j \leq d$) of class $\mathcal{C}^{\infty}(\mathbb{R}^d)$, for which all the derivatives have polynomial growth. In a series of papers (see [3], [4], [5], [1], [2]) a 'magnetic pseudodifferential calculus' was proposed; this is a gauge covariant functional calculus (which is the Weyl calculus if $B = 0$), i.e. a systematic procedure to associate to suitable 'classical observables' f (usually f belongs to Hörmander's symbol classes $S^m(\mathbb{R}^d)$, $m \in \mathbb{R}$) the operators $\mathcal{O}_p^A(f) \in \mathcal{B}(\mathcal{S}(\mathbb{R}^d))$, defined by oscillatory integrals:

$$
[\mathcal{O}_p^A(f)u](y) := \int_{\mathbb{R}^{2d}} e^{i(\langle x-y,\eta\rangle - \Gamma^A(x,y))} f\left(\frac{x+y}{2},\eta\right) u(y) \mathrm{d}y \bar{\mathrm{d}}\eta, \qquad (1.1)
$$

where $\bar{\mathrm{d}}\eta := (2\pi)^{-d} \mathrm{d}\eta, u \in \mathcal{S}(\mathbb{R}^d), x \in \mathbb{R}^d$ and $\Gamma^A(x, y) := \int_{[x, y]} A$ is the circulation of A along the segment $[x, y]$.

We use the notations and results of [1], where this 'magnetic pseudodifferential calculus' was developed.

Let, for every $s \in \mathbb{R}$, \mathcal{H}_A^s be the magnetic Sobolev space defined in [1]; for every $m, s \in \mathbb{R}$ and $f \in S^m(\mathbb{R}^d)$ we have $\mathcal{O}_p^A(f) \in \mathcal{B}(\mathcal{H}_A^s, \mathcal{H}_A^{s-m})$. The first main result of this paper consists in the following theorem

Theorem 1.1. Let $s, t, m \in \mathbb{R}$ and $f \in S^m(\mathbb{R}^d)$. We can choose two positive integers N', N'' depending on s, t, m such that if the following hypothesis hold

- i) $m < s t$:
- ii) we have

$$
\lim_{|x| \to \infty} \partial_x^{\alpha} \partial_{\xi}^{\beta} f(x, \xi) = 0, \ \forall \xi \in \mathbb{R}^d, \alpha, \beta \in \mathbb{N}^d, |\alpha| \le N', |\beta| \le N'', \ (1.2)
$$

then the operator $\mathcal{O}_p^A(f) : \mathcal{H}_A^s \to \mathcal{H}_A^t$ is compact.

Let $f \in S^m(\mathbb{R}^d)$ be an elliptic symbol. As we know from [1], there exists $g \in S^{-m}(\mathbb{R}^d)$ such that

$$
a := f \#^B g - 1 \in S^{-\infty}(\mathbb{R}^d), b := g \#^B f - 1 \in S^{-\infty}(\mathbb{R}^d),
$$
 (1.3)

where $f#^B g$ stands for the symbol of the composition $\mathcal{O}_p^A(f) \circ \mathcal{O}_p^A(g)$. $\mathcal{O}_p^A(g)$ is an approximate inverse for $\mathcal{O}p^{A}(f)$, called parametrix. Generally the operators $\mathcal{O}_p^A(a)$ and $\mathcal{O}_p^A(b)$ are smoothing, but not compact. The next main result is given by

Theorem 1.2. Let $f \in S^m(\mathbb{R}^d)$. Suppose that there exists a positive constant c such that

$$
|f(x,\xi)| \ge c\langle \xi \rangle^m, \text{ for all } x,\xi \in \mathbb{R}^d. \tag{1.4}
$$

Then we can choose g, a, b in (1.3) such that for all $s, t \in \mathbb{R}$, there exist the positive integers $\overline{N}, \overline{N}', \overline{N}''$ (depending on s, t, m), such that if the following assumptions hold

$$
\lim_{|x| \to \infty} |\partial^{\alpha} B(x)| = 0, \text{ for all } \alpha \in \mathbb{N}^d, |\alpha| \le \overline{N}
$$
 (1.5)

and

$$
\lim_{|x| \to \infty} \partial_x^{\alpha} \partial_{\xi}^{\beta} f(x, \xi) = 0, \ \forall \xi \in \mathbb{R}^d, \alpha, \beta \in \mathbb{N}^d, 1 \le |\alpha| \le \overline{N}', |\beta| \le \overline{N}'', \tag{1.6}
$$

then the operators $\mathcal{O}_p^A(a): \mathcal{H}_A^s \to \mathcal{H}_A^t$ and $\mathcal{O}_p^A(b): \mathcal{H}_A^s \to \mathcal{H}_A^t$ are compact.

In section 2 we study the boundedness (a result of Calderon and Vaillancourt type) and compactness of a kind of operators more general than the one defined in (1.1), which implies the Theorem 1.1 in the case $s = t = 0$. Section 3 is dedicated to some properties of the magnetic composition. In section 4 we provide the proof of Theorem 1.1 in the general case. The last section is devoted to the study of a parametrix of an elliptic operator under the assumptions of Theorem 1.2.

2. Compactness of magnetic pseudodifferential operators

We are going to investigate the following operator (defined by an oscillatory integral)

$$
T_a u(x) := \int_{\mathbb{R}^{2d}} e^{i(\langle x-y,\xi\rangle - \Gamma^A(x,y))} a(x,y,\xi) u(y) \mathrm{d}y \bar{\mathrm{d}}\xi, x \in \mathbb{R}^d,
$$
 (2.1)

where $u \in \mathcal{S}(\mathbb{R}^d)$ and $a \in B\mathcal{C}^{\infty}(\mathbb{R}^{3d})$. We have $T_a \in \mathcal{B}(\mathcal{S}(\mathbb{R}^d))$; in order to prove that $T_a \in \mathcal{B}(L^2(\mathbb{R}^d))$, we need the following lemma (see [1]).

Lemma 2.1. Let $F(x, y, z)$ be the flux of the 2-form B through the triangle $[x - y + z, x - y - z, x + y - z], that is$

$$
F(x, y, z) := \int_{[x-y+z, x-y-z, x+y-z]} B, \ x, y, z \in \mathbb{R}^d.
$$
 (2.2)

Then $\nabla_x F$, $\nabla_y F$ and $\nabla_z F$ are of the form $D(x, y, z)y + E(x, y, z)z$, where D and E are $d \times d$ antisymmetrical matrices with components of class $BC^{\infty}(\mathbb{R}^d)$. In addition, if

$$
\lim_{|x|\to\infty}\partial^{\alpha}B_{jk}(x)=0, \text{ for all } 1\leq j,k\leq d,
$$

for an $\alpha \in \mathbb{N}^d$, then

$$
\lim_{|x| \to \infty} (|\partial^{\alpha} D(x, y, z)| + |\partial^{\alpha} E(x, y, z)|) = 0, \text{ for all } y, z \in \mathbb{R}^d.
$$

Proposition 2.1. In the conditions above $T_a \in \mathcal{B}(L^2(\mathbb{R}^d))$ and

$$
||T_a||_{\mathcal{B}(L^2(\mathbb{R}^d))} \le M := C \sup_{x,y,\xi \in \mathbb{R}^d, |\alpha| \le 2d+2, |\beta| \le 3d+4} |\partial_y^{\alpha} \partial_{\xi}^{\beta} a(x,y,\xi)|, \quad (2.3)
$$

where C is a positive constant depending only on d .

Proof. The proof is quite standard. Choose $\chi \in C_0^{\infty}(\mathbb{R}^{3d})$ with $\chi(0,0,0)$ = 1 and for $\varepsilon \in [0,1]$ define $a_{\varepsilon}(x, y, \xi) := \chi(\varepsilon x, \varepsilon y, \varepsilon \xi) a(x, y, \xi)$. It holds $\lim_{\varepsilon \searrow 0} K_{a_{\varepsilon}} = K_a$ in $\mathcal{S}'(\mathbb{R}^{2d})$, where $K_{a_{\varepsilon}}$ stands for the distribution kernel of the operator $T_{a_{\varepsilon}}, 0 \leq \varepsilon \leq 1$. The derivatives of a_{ε} are estimated via the derivatives of a, uniformly with respect to ε , and therefore it is sufficient to prove the estimate (2.3) for $a \in \mathcal{S}(\mathbb{R}^{3d})$.

Using the operator $\langle x-y\rangle^{-2p}(1-\Delta_{\xi})^p$, with $p=\lceil \frac{3d}{2}\rceil$ $\frac{3d}{2}$ +2 and integrating by parts we get

$$
T_a u(x) = \int_{\mathbb{R}^d} (P_\xi u)(x) \bar{\mathrm{d}}\xi, \ u \in \mathcal{S}(\mathbb{R}^d), \ x, \xi \in \mathbb{R}^d. \tag{2.4}
$$

Here P_{ξ} is an integral operator with the integral kernel

$$
P_{\xi}(x, y) := e^{i(\langle x-y,\xi\rangle - \Gamma^A(x,y))}b(x, y, \xi),
$$

$$
b(x, y, \xi) := \langle x - y \rangle^{-2p} (1 - \Delta_{\xi})^p a(x, y, \xi), \ x, y, \xi \in \mathbb{R}^d.
$$

It is obvious that $P_{\xi} \in \mathcal{B}(L^2(\mathbb{R}^d))$. We use now the Cotlar-Knapp-Stein lemma in order to prove that there exists a function $h : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ such that the following inequalities hold

$$
||P_{\xi}P_{\eta}^*||_{\mathcal{B}(L^2(\mathbb{R}^d))} \leq h^2(\xi, \eta),
$$
\n(2.5)

$$
||P_{\xi}^* P_{\eta}||_{\mathcal{B}(L^2(\mathbb{R}^d))} \le h^2(\xi, \eta),
$$
\n(2.6)

for $\xi, \eta \in \mathbb{R}^d$ and

$$
||H||_{\mathcal{B}(L^2(\mathbb{R}^d))} \le M,\tag{2.7}
$$

where H is the integral operator with the integral kernel h .

The Stokes formula and an integration by parts with the operator given by $\langle \xi - \eta \rangle^{-2q} (1 - \Delta_z)^q$, $q = d + 1$ allow us to see that the integral kernel of the operator $P_{\xi}P_{\eta}^*$ is given by

$$
K_{\xi,\eta}(x,y) := e^{i(\langle x,\xi\rangle - \langle y,\eta\rangle - \Gamma^A(x,y))}.
$$

$$
\int_{\mathbb{R}^d} e^{i\langle z,\eta-\xi\rangle} \langle \xi-\eta\rangle^{-2q} (1-\Delta_z)^q \left[e^{-iG(x,y,z)} b(x,z,\xi) \overline{b(y,z,\eta)} \right] dz,
$$
(2.8)

for $x, y, \xi, \eta \in \mathbb{R}^d$, where $G(x, y, z) := F\left(\frac{x+z}{2}\right)$ $\frac{z}{2}$, $\frac{z-y}{2}$ $\frac{-y}{2}, \frac{x-y}{2}$ $\frac{-y}{2}$). Using Lemma 2.1, we notice that

$$
\int_{\mathbb{R}^d} |K_{\xi,\eta}(x,y)| dy \le h^2(\xi,\eta), \ \int_{\mathbb{R}^d} |K_{\xi,\eta}(x,y)| dx \le h^2(\xi,\eta), \ x, y, \xi, \eta \in \mathbb{R}^d,
$$
\n(2.9)

with $h(\xi, \eta) := M(\xi - \eta)^{-q}$, implying the estimates (2.5), (2.6) and (2.7). \Box

The next result shows that under an additional assumption imposed on a the operator T_a is compact.

Proposition 2.2. Let $a \in B\mathcal{C}^{\infty}(\mathbb{R}^{3d})$. Assume that there exists $t \in [0,1]$ such that

$$
\lim_{|tx+(1-t)y|+|\xi|\to\infty} \partial_y^{\alpha} \partial_{\xi}^{\beta} a(x,y,\xi) = 0, \ \forall \alpha, \beta \in \mathbb{N}^d, |\alpha| \le 2d+2, |\beta| \le 3d+4.
$$
\n(2.10)

Then T_a is a compact operator on $L^2(\mathbb{R}^d)$.

Proof. Let $\chi \in C_0^{\infty}(\mathbb{R}^{2d})$, $\chi(x,\xi) = 1$ for $|x| + |\xi| \leq 1$. Set $\chi_R(x,\xi) :=$ $\chi\left(\frac{x}{R}\right)$ $\frac{x}{R}, \frac{\xi}{R}$ $\left(\frac{\xi}{R}\right)$, $R \ge 1$ and $a_R(x,\xi) := \chi_R(tx + (1-t)y,\xi)a(x,y,\xi)$. Using (2.10) it follows

$$
\lim_{R \to \infty} \sup_{\mathbb{R}^{3d}} \left| \partial_y^{\alpha} \partial_{\xi}^{\beta} [a_R(x, y, \xi) - a(x, y, \xi)] \right| = 0,
$$

for all $\alpha, \beta \in \mathbb{N}^d, |\alpha| \leq 2d + 2, |\beta| \leq 3d + 4$. Hence, by virtue of Proposition 2.1, $\lim_{R\to\infty} T_{a_R} = T_a$ in $B(L^2(\mathbb{R}^d))$. Since the distribution kernel of the operator T_{a_R} is a function from $\mathcal{S}(\mathbb{R}^{2d})$, it yields that the operator T_{a_R} is compact in $L^2(\mathbb{R}^d)$. The proof is finished.

In order to apply this proposition to the operator $O_p^A(f)$ appearing in Theorem 1.1 we need the following elementary lemma

Lemma 2.2. Let $a \in \mathcal{C}(\mathbb{R}^{2d})$ be a function which satisfies

- i) for each $x \in \mathbb{R}^d$ the function $a(x, \cdot)$ is continuous, uniformly with respect to x;
- ii) $\lim_{|x| \to \infty} a(x,\xi) = 0$, for all $\xi \in \mathbb{R}^d$;
- iii) $\lim_{|\xi| \to \infty} a(x,\xi) = 0$, uniformly with respect to $x \in \mathbb{R}^d$.

Then $\lim_{|x|+|\xi| \to \infty} a(x,\xi) = 0.$

Corollary 2.1. Theorem 1.1 holds true in the case $s = t = 0$, with $N' =$ $2d + 2$, $N'' = 3d + 4$.

Proof. We have $O_p^A(f) = T_a$, where $a(x, y, \xi) := f\left(\frac{x+y}{2}\right)$ $(\frac{+y}{2}, \xi), x, y, \xi \in \mathbb{R}^d$. Then $a \in BC^{\infty}(\mathbb{R}^{3d})$ if $m < 0$ and the formula (2.10) with $t = \frac{1}{2}$ $\frac{1}{2}$ is a consequence of (1.2), Lemma 2.2 and the fact that $f \in \mathcal{S}^m(\mathbb{R}^d)$, $m < 0$. \Box

3. Some properties of the magnetic composition

Let f and g be two symbols, $f \in S^m(\mathbb{R}^d)$, $g \in S^{m'}(\mathbb{R}^d)$, $m, m' \in \mathbb{R}$. As we know from [1], $O_p^A(f) \circ O_p^A(g) = O_p^A(f \#^B g)$, where the symbol $f \#^B g \in$ $S^{m+m'}(\mathbb{R}^d)$ is defined by the oscillatory integral

$$
(f\#^B g)(X) := \int_{\mathbb{R}^{4d}} e^{-2i[Y,Z]} \omega^B(x,y,z) f(X-Y) g(X-Z) \bar{d}Y \bar{d}Z, \quad (3.1)
$$

where $X = (x, \xi), Y = (y, \eta), Z = (z, \zeta), x, y, z, \xi, \eta, \zeta \in \mathbb{R}^d, [Y, Z] =$ $\langle \eta, z \rangle - \langle \zeta, y \rangle$, $\overline{\mathrm{d}Y} = \pi^{-n} \mathrm{d}y \mathrm{d}\eta$, $\overline{\mathrm{d}Z} = \pi^{-n} \mathrm{d}z \mathrm{d}\zeta$, $\omega^B(x, y, z) = e^{-iF(x, y, z)}$ (*F* is defined in Lemma 2.1).

Set $N_1 = N_2 := \left[\frac{d}{2}\right]$ $\left[\frac{d}{2}\right]+1, N_3:=\left[\frac{d+m_+}{2}\right]$ $\left[\frac{m_+}{2}\right] + 1, N_4 := \left[\frac{d+m'_+}{2}\right] + 1$, where $m_{\pm} := \max(\pm m, 0).$

Proposition 3.1. Assume that there exist $p, q \in \mathbb{N}$ such that the following hypothesis hold true

- i) $\lim_{|x| \to \infty} |\partial^{\alpha} B(x)| = 0$, for all $\alpha \in \mathbb{N}^d$, $|\alpha| \le p + 1 + 2(N_3 + N_4)$.
- *ii*) $\lim_{|x| \to \infty} \partial_x^{\alpha} \partial_{\xi}^{\beta}$ $\int_{\xi}^{\beta} f(x,\xi) = 0$, for all $\alpha, \beta \in \mathbb{N}^d, 1 \leq |\alpha| \leq 2N_4 + 1 + 1$ $p, |\beta| \le 2N_2 + q.$
- *iii*) $\lim_{|x| \to \infty} \partial_x^{\alpha} \partial_{\xi}^{\beta}$ $\int_{\xi}^{\beta} g(x,\xi) = 0$, for all $\alpha, \beta \in \mathbb{N}^d, 1 \leq |\alpha| \leq 2N_3 + 1 + 1$ $p, |\beta| \leq 2N_1 + q.$

Then we have the identity

$$
f#^B g = fg + r, \ r \in S^{m+m'-1}(\mathbb{R}^d)
$$
 (3.2)

and

$$
\lim_{|x| \to \infty} \partial_x^{\gamma} \partial_{\xi}^{\delta} r(x, \xi) = 0, \text{ for all } \xi \in \mathbb{R}^d, \gamma, \delta \in \mathbb{N}^d, |\gamma| \le p, |\delta| \le q. \tag{3.3}
$$

Proof. We use the identity $h(1) = h(0) + \int_0^1 h'(t) dt$ with $h(t) := f(X$ $tY)g(X-tZ), X,Y,Z \in \mathbb{R}^{2d}$ and integrate by parts in order to get the equation (3.2), with

$$
r(X) = -\frac{1}{2i} \int_0^1 dt \int_{\mathbb{R}^{4d}} e^{-2i[Y,Z]} L_1 L_2 L_3 L_4 R(t,X,Y,Z) \overline{d}Y \overline{d}Z,\qquad(3.4)
$$

where $L_1 = \langle y \rangle^{-2N_1} (1 - \frac{1}{4} \Delta_{\zeta})^{N_1}, L_2 = \langle z \rangle^{-2N_2} (1 - \frac{1}{4} \Delta_{\eta})^{N_2}, L_3 = \langle \eta \rangle^{-2N_3} (1 - \frac{1}{4} \Delta_{\eta})^{N_4}$ $(\frac{1}{4}\Delta_z)^{N_3}$, $L_4 = \langle \zeta \rangle^{-2N_4} (1 - \frac{1}{4}\Delta_y)^{N_4}$ and

$$
R(t, X, Y, Z) = \omega^B(x, y, z)[2t \langle (\nabla_x f)(X - tY), (\nabla_{\xi} g)(X - tZ) \rangle
$$

\n
$$
- 2t \langle (\nabla_{\xi} f)(X - tY), (\nabla_x g)(X - tZ) \rangle
$$

\n
$$
- i \langle (\nabla_{\xi} f)(X - tY), (\nabla_z F)(x, y, z) \rangle g(X - tZ)
$$

\n
$$
+ if (X - tY) \langle (\nabla_y F)(x, y, z), (\nabla_{\xi} g)(X - tZ) \rangle].
$$

We deduce the formula (3.3) by a careful examination of the integral (3.4) , where we use the hypothesis $i) - iii$, the Lemma 2.1, some additional integrations by parts in order to eliminate the terms of the form $y^{\alpha}z^{\beta}, \alpha, \beta \in \mathbb{N}^d$ and the dominated convergence theorem. \Box

In a similar way we obtain the following result

Proposition 3.2. Assume that there exist $p, q \in \mathbb{N}$ such that

i) $\lim_{|x| \to \infty} \partial_x^{\alpha} \partial_{\xi}^{\beta}$ $\int_{\xi}^{\beta} f(x,\xi) \; = \; 0, \; \textit{ for all } \; \alpha, \beta \; \in \; \mathbb{N}^d, |\alpha| \; \leq \; 2N_4 \, + \, p, |\beta| \; \leq \; \delta$ $2(N_2+N_3+N_4)+p+q$ or

i')
$$
\lim_{|x| \to \infty} \partial_x^{\alpha} \partial_{\xi}^{\beta} g(x,\xi) = 0
$$
, for all $\alpha, \beta \in \mathbb{N}^d, |\alpha| \le 2N_3 + p, |\beta| \le 2(N_1 + N_3 + N_4) + p + q$.

Then

$$
\lim_{|x| \to \infty} \partial_x^{\gamma} \partial_{\xi}^{\delta} (f \#^B g)(x, \xi) = 0, \text{ for all } \xi \in \mathbb{R}^d, \gamma, \delta \in \mathbb{N}^d, |\gamma| \le p, |\delta| \le q. \tag{3.5}
$$

4. Compactness in magnetic Sobolev spaces

In this section we give the proof of Theorem 1.1 for arbitrary $s, t \in \mathbb{R}$; in the case $s = t = 0$ this was achieved in Corollary 2.1. Let $\{s_r\}_{r \in \mathbb{R}}$ be the family of symbols considered in [2]; we have $s_r \in \mathcal{S}^r(\mathbb{R}^d)$, $s_0 = 1$ and $s_r \#^B s_{-r} = 1$. Then $a = s_{-t} \#^B b \#^B s_r$, where $b = s_t \#^B a \#^B s_{-r} \in \mathcal{S}^{\overline{m}}(\mathbb{R}^d)$, $\overline{m} := m + t - r < 0$. We have $\mathcal{O}_p^A(s_r) \in \mathcal{B}(\mathcal{H}_p^p)$ $_{A}^{p},\mathcal{H}_{A}^{p-r}$ $_{A}^{p-r}$), for any $p \in \mathbb{R}$ and the desired conclusion yields if we prove that $O_p^A(b)$ is a compact operator of $L^2(\mathbb{R}^d)$. This fact is a consequence of Corollary 1.1 if we check that

$$
\lim_{|x| \to \infty} \partial_x^{\alpha} \partial_{\xi}^{\beta} b(x, \xi) = 0, \ \forall \alpha, \beta \in \mathbb{N}^d, |\alpha| \le N_0' := 2d + 2, |\beta| \le N_0'' := 3d + 4,
$$
\n(4.1)

and this will follow from Proposition 3.2, with appropriate choices for N', N'' . We have

$$
\lim_{|x| \to \infty} \partial_x^{\gamma} \partial_{\xi}^{\delta} (s_t \#^B a)(x, \xi) = 0, \ \forall \gamma, \delta \in \mathbb{N}^d, |\gamma| \le \overline{N}'_0, |\beta| \le \overline{N}''_0,\tag{4.2}
$$

where $\overline{N}'_0 = N' - 2\tilde{N}_3$, $\overline{N}''_0 = N'' - N' - 2(\tilde{N}_1 + \tilde{N}_4)$ and $\tilde{N}_1 = \tilde{N}_2 = \begin{bmatrix} \frac{d}{2} \\ \frac{d}{2} \end{bmatrix}$ $\frac{d}{2}]+1,$ $\tilde{N}_3 = \left[\frac{d+t_+}{2}\right]$ $\left[\frac{t+1}{2}\right]+1, \tilde{N}_4\ =\ \left[\frac{d+m_+}{2}\right]$ $\left\lfloor \frac{m_+}{2} \right\rfloor + 1$. Finally, in order to get (4.1) , we need $N_0' = \overline{N}_0' - 2\underline{N}_4$, $N_0'' = \overline{N}_0'' - \overline{N}_0' - 2(\underline{N}_2 + \underline{N}_3)$, where $\underline{N}_1 = \underline{N}_2 =$ $\lceil \frac{d}{2} \rceil$ $\left[\frac{d}{2}\right]+1, \underline{N}_3=\left[\frac{d+(m+t)_+}{2}\right]$ $\left[\frac{a+t)_+}{2}\right]+1, \underline{N}_4=\left[\frac{d+r_-}{2}\right]$ $\frac{-r_{-}}{2}$ + 1.

The right choices for N' and N'' are $N' = N_0' + 2(\tilde{N}_3 + \underline{N}_4)$ and $N'' =$ $2N'_0 + N''_0 + 2(\tilde{N}_1 + \tilde{N}_3 + \tilde{N}_4 + \underline{N}_2 + \underline{N}_3 + 2\underline{N}_4)$. The Theorem 1.1 is proved.

5. The parametrix of an elliptic operator

Lemma 5.1. Let $f \in \mathcal{S}^m(\mathbb{R}^d)$ and assume that the hypothesis (1.4), (1.5) and (1.6) hold with $\overline{N} = \overline{N}_0 := 2d + 2 + 2(N_3 + N_4)$, $\overline{N}' = \overline{N}'_0 := 2d + 2 +$ 0 $2N_4 + 1$ and $\overline{N}'' = \overline{N}''_0$ $y_0'':=3d+4+2N_2$, where $N_1=N_2=[\frac{d}{2}]$ $\left[\frac{d}{2} \right] + 1, N_3 =$ $N_4=\left\lceil\frac{d+|m|}{2}\right\rceil$ $\left[\frac{|m|}{2}\right]$. Then there exists $g_0 \in \mathcal{S}^{-m}(\mathbb{R}^d)$ such that $r := f \#^B g_0 - 1 \in$ $\mathcal{S}^{-1}(\mathbb{R}^d)$, $r' := g_0 \#^B f - 1 \in \mathcal{S}^{-1}(\mathbb{R}^d)$ and $\mathcal{O}_p^A(r)$ and $\mathcal{O}_p^A(r')$ are compact operators on $L^2(\mathbb{R}^d)$.

Proof. Set $g_0 := \frac{1}{f}$; then $g_0 \in \mathcal{S}^{-m}(\mathbb{R}^d)$ and it satisfies the condition (1.6) with the same \overline{N}'_0 $_{0}^{\prime},\overline{N}_{0}^{\prime\prime}% ,\overline{N}_{0}^{\prime\prime},\overline{N}_{0}^{\prime\prime},\overline{N}_{0}^{\prime\prime},$ \int_{0}^{π} . Proposition 3.1 leads us to

$$
\lim_{|x| \to \infty} \partial_x^{\gamma} \partial_{\xi}^{\delta} r(x,\xi) = 0, \ \forall \xi \in \mathbb{R}^d, \forall \gamma, \delta \in \mathbb{N}^d, |\gamma| \le 2d + 2, |\delta| \le 3d + 4.
$$

We conclude by invoking Corrolary 2.1. \Box

Lemma 5.2. Let $p, q \in \mathbb{N}$ and $f \in \mathcal{S}^m(\mathbb{R}^d)$. Assume that the hypothesis (1.4), (1.5) and (1.6) hold with $\overline{N} = \underline{N}_0 := 3d + 7 + 2[|m|] + p$, $\overline{N}' = \underline{N}'_0 :=$ $2d+6+2[|m|]+p$ and $\overline{N}'' = N''_0 := 4d+10+p+q$. Then there exist $g', g'' \in \mathcal{S}^{-m}(\mathbb{R}^d)$ and $\overline{r}', \overline{r}'' \in \mathcal{S}^{-\infty}(\mathbb{R}^d)$ such that

$$
\overline{r}' = f \#^B g' - 1, \ \overline{r}'' = g'' \#^B f - 1,
$$

$$
\lim_{|x| \to \infty} \partial_x^{\gamma} \partial_{\xi}^{\delta} \overline{r}'(x, \xi) = 0, \text{ for all } \xi \in \mathbb{R}^d, \gamma, \delta \in \mathbb{N}^d, |\gamma| \le p, |\delta| \le q \qquad (5.1)
$$

and

$$
\lim_{|x| \to \infty} \partial_x^{\gamma} \partial_{\xi}^{\delta} \overline{r}''(x,\xi) = 0, \text{ for all } \xi \in \mathbb{R}^d, \gamma, \delta \in \mathbb{N}^d, |\gamma| \le p, |\delta| \le q. \tag{5.2}
$$

Proof. We use the notations from the previous lemma: $g_0 := \frac{1}{f} \in \mathcal{S}^{-m}(\mathbb{R}^d)$ and $r := f#^B g_0 - 1 \in S^{-1}(\mathbb{R}^d)$. Set $r_k = r#^B r#^B \dots \#^B r$ (k factors). Then $r_k \in S^{-k}(\mathbb{R}^d)$, $r_{k+1} = r_k \#^B r$ and it is easy to prove by induction, using Proposition 3.1 (for r) and Proposition 3.2 (for $r_k \#^B r$) that

$$
\lim_{|x| \to \infty} \partial_x^{\gamma} \partial_{\xi}^{\delta} r_k(x, \xi) = 0, \ \forall \xi \in \mathbb{R}^d, \forall k \ge 1, \forall \gamma, \delta \in \mathbb{N}^d, |\gamma| \le p, |\delta| \le q. \tag{5.3}
$$

Let $\psi \in C_0^{\infty}(\mathbb{R}^d)$ with $\psi(\xi) = 1$ for $|\xi| \leq 1$ and consider a sequence $(t_k)_{k\geq 1}, t_k \in \mathbb{R}, t_k \nearrow \infty$ as $k \to \infty$ so rapidly such that the series $\sum_{k=1}^{\infty} s_k$ converge in $\mathcal{S}^{-1}(\mathbb{R}^d)$, where $s_k(x,\xi) := (-1)^k (1-\psi) \left(\frac{\xi}{\hbar} \right)$ $\overline{t_k}$ $\int r_k(x,\xi)$. The sum s of this series satisfies

$$
\lim_{|x| \to \infty} \partial_x^{\gamma} \partial_{\xi}^{\delta} s(x, \xi) = 0, \ \forall \xi \in \mathbb{R}^d, \forall \gamma, \delta \in \mathbb{N}^d, |\gamma| \le p, |\delta| \le q. \tag{5.4}
$$

If we choose $g' := g_0 \#^B(1+s)$ and define $\overline{r}' := f \#^B g' - 1$, we get the equation (5.1) fulfilled. The statements regarding g'' and \bar{r}'' are proved in a similar way. \Box

Proof of Theorem 1.2. In the setting of Lemma 5.2, let us denote Δ := $g' - g'' \in \mathcal{S}^{-m}(\mathbb{R}^d)$. We also have

$$
\Delta = g'' \#^B \overline{r}' - \overline{r}'' \#^B g' \in \mathcal{S}^{-\infty}(\mathbb{R}^d),\tag{5.5}
$$

and via Proposition 3.2

$$
\lim_{|x| \to \infty} \partial_x^{\alpha} \partial_{\xi}^{\beta} \Delta(x, \xi) = 0, \ \forall \xi \in \mathbb{R}^d, \forall \alpha, \beta \in \mathbb{N}^d, |\alpha| \le M', |\beta| \le M'', \tag{5.6}
$$

where $M' = p - 2 - 2 \left[\frac{d+m}{2} \right]$ $\left[\frac{m_{-}}{2}\right]$, $M'' = q - p - 4 - 4\left[\frac{d}{2}\right]$ $\frac{d}{2}$. Notice that

$$
g' \#^B f = 1 + \overline{r}'' + \Delta \#^B f. \tag{5.7}
$$

We have $\Delta \#^B f \in \mathcal{S}^{-\infty}(\mathbb{R}^d)$ and by Proposition 3.2,

$$
\lim_{|x| \to \infty} \partial_x^{\alpha} \partial_{\xi}^{\beta} (\Delta \#^{B} f)(x, \xi) = 0, \ \forall \xi \in \mathbb{R}^{d}, \forall \alpha, \beta \in \mathbb{N}^{d}, |\alpha| \leq \overline{M}', |\beta| \leq \overline{M}'', \tag{5.8}
$$

where $\overline{M}' = p - 4 - 2\left(\frac{d+m_+}{2}\right) + \frac{d+m_-}{2}$ $\left[\frac{m_-}{2}\right],~\overline{M}''\,=\,q\,-\,2p\,-\,6\,-\,8\left[\frac{d}{2}\right]$ $\frac{d}{2}$ + $2\left[\frac{d+m_-}{2}\right]$ $\frac{m_-}{2}$.

Set $g := g'$, $a := \overline{r}'$, $b := \overline{r}'' + \Delta \#^B f$ and choose $\overline{N} = \underline{N}_0$, $\overline{N}' = \underline{N}'_0$, $\overline{N}'' =$ \underline{N}_0'' (with $\underline{N}_0, \underline{N}_0', \underline{N}_0''$ defined in Lemma 5.2). The numbers p, q are chosen Large enough such that $\overline{M}' \ge N'$, $\overline{M}'' \ge N''$ (with N' and N'' from Theorem 1.1 where $m = -\infty$). The proof is finished.

 \Box

References

- [1] V. IFTIMIE, M. MANTOIU and R. PURICE, Magnetic pseudodifferential operators, Publ. Res. Inst. Math. Sci., 43 (2007), 585-623.
- [2] V. IFTIMIE, M. MANTOIU and R. PURICE, *Commutator criteria for magnetic pseu*dodifferential operators, preprint and submitted.
- [3] M. V. Karasev and T. A. Osborn, Symplectic areas, quantization and dynamics in electromagnetic fields, J. Math. Phys., 43 (2002), 756-788.
- [4] M. V. Karasev and T. A. Osborn, Quantum magnetic algebra and magnetic curvature, *J. Phys. A*, **37** (2004), 2345-2363.
- [5] M. MÜLLER, Product rule for gauge invariant Weyl symbols and its application to the semiclassical description of guiding center motion, J. Phys. A, 32 (1999), 1035-1052.
- [6] M. MANTOIU and R. PURICE, The algebra of observables in a magnetic field, Mathematical results in quantum mechanics (Taxco, 2001), Contemp. Math., vol. 307, pp. 239-245, Amer. Math. Soc., Providence, R. I., 2002.
- [7] M. MĂNTOIU and R. PURICE, The magnetic Weyl calculus, *J. Math. Phys.*, **45** (2004), 1394-1417.

Viorel Iftimie

University of Bucharest, Faculty of Mathematics and Computer Science 14 Academiei Street, 010014 Bucharest, Romania

E-mail: viftimie@fmi.unibuc.ro