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1 (LIX) (2010), 99–110

Unicity properties and algebraic properties for the
solutions of the functional equation

f ◦ f + af + b1R = 0 (I)

Traian Cristian Gı̂dea

Communicated by Ion Chiţescu
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1. Introduction

In this part results (without proof) from [2] which will be used throughout
this paper are introduced.
Let a, b be real numbers a 6= 0, b 6= 0. We shall be concerned with the
functional equation (called fundamental equation)

f ◦ f + af + b1R = 0.

Namely, we want to find a continuous function f : R → R having the
property that, for any x ∈ R

f (f(x)) + af(x) + bx = 0.

Such a function (in case it exists) will be called a solution of the fundamental
equation (or, simply a solution). In the sequel, the fundamental equation
will be written in the form

f ◦ f + af + bx = 0.

It is seen that a solution must be a homeomorphism. Moreover, the function
g = f−1 satisfies the equation
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g ◦ g +
a

b
g +

1
b

1R = 0.

Incidentally, the fundamental equation will be written alternatively

f ◦ f ± af ± bx = 0.

with positive a and b. The characteristic equation of the problem is the
quadratic equation

x2 + ax+ b = 0.

with (complex) roots r1, r2 and discriminant ∆ = a2 − 4b. Actually, in this
paper we shall study the case when r1, r2 are real.

Theorem 1.1. (Calibration Theorem) Let us assume that f is a solution
and |r1| ≤ |r2|. Then, for any real numbers x, y one has

|r1| · |x− y| ≤ |f(x)− f(y)| ≤ |r2||x− y|.

Lemma 1.1. Let us assume 1 < r1 < r2
For any solution f we have the following properties:
a) f(0) = 0,
b) For any x0 ∈ R one has:

r1x0 ≤ f(x0) ≤ r2x0, if x0 ≥ 0
r2x0 ≤ f(x0) ≤ r1x0, if x0 < 0.

Lemma 1.2. Let us assume that r2 < r1 < 0. For any solution f , we have
the following properties:

a) f(0) = 0,
b) For any x0 ∈ R one has:

r2x0 ≤ f(x0) ≤ r1x0, if x0 ≥ 0
r1x0 ≤ f(x0) ≤ r2x0, if x0 < 0.

Lemma 1.3. Let us assume that r2 < r1 < −1. Let 0 6= x0 ∈ R and
x1 ∈ [r2x0, r1x0] (in case x0 > 0) or x1 ∈ [r1x0, r2x0] (in case x0 < 0).
Using the coefficients of the fundamental equation we define the sequences
(xn)n≥0 and (x−n)n≥0 as follows:

a) xn+2 = −axn+1−bxn with starting terms x0 and x1. Such a sequence
is the sequence given via xn+1 = f (xn), with starting term x0 (see Lemma
1.2 where we take x1 = f (x0)).

b) The sequence(x−n)n is defined in two steps:
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Firstly we define the sequence (yn)n≥0 given via

yn+2 = −a
b
yn+1 −

1
b
yn

with starting terms y0 = x1 and y1 = x0.
Next we write x−n = yn+1 for all natural n. Hence

x−n−2 = −a
b
x−n−1 −

1
b
x−n

with starting terms x0 = y1 and x−1 = y2.
Such a sequence is the sequence given via x−n−1 = f−1 (x−n) with starting
term x0 (see Lemma 1.2 where we take x1 = f (x0)⇔ x0 = f−1 (x1)).

In case x0 > 0 we have x2n ↑ ∞ (strictly), x2n+1 ↓ −∞ (strictly),
x−2n ↓ 0 (strictly) and x−2n+1 ↑ 0 (strictly). This implies⋃

n≥0

([x2n, x2n+2] ∪ [x−2n, x−2n+2]) = (0,∞).

⋃
n>0

([x2n+1, x2n−1] ∪ [x−2n+1, x−2n−1]) = (−∞, 0).

The case x0 < 0 is symmetric (e. g. x2n ↓ −∞ strictly a.s.o.).

Lemma 1.4. Let us assume that 1 < r1 < r2. Let 0 6= x0 ∈ R and
x1 ∈ [r1x0, r2x0] (in case x0 > 0) or x1 ∈ [r2x0, r1x0] (in case x0 < 0).

We define the sequences (xn)n≥0 respectively (x−n)n≥0 exactly like in
Lemma 1.3. In particular we can take xn+1 = f (xn) with starting term x0

and x−n−1 = f−1 (x−n) with starting term x0 (see Lemma 1.1).
In case x0 > 0 we have xn ↑ ∞ (strictly), x−n ↓ 0 (strictly). In case

x0 < 0 we have xn ↓ −∞ (strictly) and x−n ↑ 0 (strictly). This implies⋃
n∈Z

[xn, xn+1] = (0,∞), if x0 > 0,

⋃
n∈Z

[xn, xn+1] = (−∞, 0), if x0 < 0.

Lemma 1.5. Let us assume that 0 < r1 < 1 < r2. Let x0 ∈ R and x1 >
r1x0, x1 > r2x0. We define the sequence (xn)n≥0 and (x−n)n≥0 exactly like
in Lemma 1.3. In particular we can take xn+1 = f (xn), with starting term
x0 and x−n−1 = f−1 (x−n) , with starting term x0.

Then xn ↑ ∞ (strictly), x−n ↓ −∞ (strictly) and⋃
n∈Z

[xn, xn+1] = R.
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Theorem 1.2. (Case 1 < r1 < r2).
We shall write the fundamental equation in the form:

f ◦ f − af + bx = 0.

All the solutions f : R→ R are of the form

f(x) =


F1(x), if x > 0

0, if x = 0
F2(x), if x < 0,

where F1 and F2 are constructed as follows:
1. We construct the sequences (xn)n≥0 and (x−n)n≥0 according to Lemma

1.4 starting with an arbitrary x0 > 0 and x1 ∈ [r1x0, r2x0]. We consider
a bijection f0 : [x0, x1] → [x1, x2] having the property that for any x > y in
[x0, x1] one has

r1(x− y) ≤ f0(x)− f0(y) ≤ r2(x− y). (1.1)

Then, for any natural n, one can construct the bijections

fn : [xn, xn+1]→ [xn+1, xn+2]

and
f−n : [x−n, x−n+1]→ [x−n+1, x−n+2]

defined via

fn+1(x) = ax− bf−1
n (x) and f−1

−n−1(x) =
a

b
x− 1

b
f−1
−n(x). (1.2)

Finally, for any x ∈ (0,∞) =
⋃

n∈Z
[xn, xn+1] we have, for some natural

n:
– either x ∈ [xn, xn+1] and F1(x) = fn(x)
– or x ∈ [x−n, x−n+1] and F1(x) = f−n(x).
The values at the common endpoints coincide.
2. We construct the sequences (xn)n≥0 and (x−n)n≥0 according to Lemma

1.4 starting with an arbitrary x0 < 0 and x1 ∈ [r2x0, r1x0]. We consider a
bijection f0 : [x1, x0] → [x2, x1] having the property (1.1) for any x > y in
[x1, x0].

Then, for any natural n one can construct the bijections

fn : [xn+1, xn]→ [xn+2, xn+1]

and
f−n : [x−n+1, x−n]→ [x−n+2, x−n+1]

defined via (1.2).
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Finally, for any x ∈ (−∞, 0) =
⋃

n∈Z
[xn+1, xn] we have, for some natural

n:
– either x ∈ [xn+1, xn] and F2(x) = fn(x)
– or x ∈ [x−n+1, x−n] and F2(x) = f−n(x).
The values at the common endpoints coincide.

Theorem 1.3. (Case r2 < r1 < −1). All the solutions are obtained as
follows:

We start with an arbitrary x0 > 0, and we choose x1 ∈ [r2x0, r1x0].
We apply Lemma 1.3 and construct the sequences (xn)n and (x−n)n. Let
f0 : [x0, x2]→ [x3, x1] be a strictly decreasing bijection having the property

−r1(x− y) ≤ f0(y)− f0(x) ≤ −r2(x− y) (1.3)

for all x > y in [x0, x2].
We can construct the following strictly decreasing bijections (for any

natural n ):
f2n : [x2n, x2n+2]→ [x2n+3, x2n+1] ,

f2n(x) = −ax− bf−1
2n−1(x) (1.4)

f2n+1 : [x2n+3, x2n+1]→ [x2n+2, x2n+4] ,

f2n+1(x) = −ax− bf−1
2n (x) (1.5)

f−2n : [x−2n, x−2n+2]→ [x−2n+3, x−2n+1] ,

f−1
−2n(x) = −a

b
x− 1

b
f−2n+1(x) (1.6)

f−2n−1 : [x−2n+1, x−2n−1]→ [x−2n, x−2n+2] ,

f−1
−2n−1(x) = −a

b
x− 1

b
f−2n(x). (1.7)

Since the reunion of all above mentioned intervals is equal to
R \ {0}, we can construct f : R→ R, given via:

f(x) =
{

0, if x = 0
fn(x) if x 6= 0,

where 0 6= x belongs to one of the above mentioned intervals which is the
domain of definition for fn, n ∈ Z. The values at the common endpoints
coincide.

Then f is a solution and all the solutions can be obtained in this way.
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Theorem 1.4. Assume 0 < r1 < 1 < r2 and let f be a solution with the
property f(0) 6= 0. Then either f(x) > x for any x ∈ R or f(x) < x for any
x ∈ R.

I. Assume that f(x) > x for all x ∈ R. Then f can be obtained as
follows:

We construct the sequences (xn)n and (x−n)n according to Lemma 1.5,
where we take x0 = 0 and x1 > 0 arbitrary ( the conditions of Lemma 1.5
are fulfilled).

We consider a strictly increasing bijection f0 : [0, x1]→ [x1, x2] such that

r1(x− y) ≤ f0(x)− f0(y) ≤ r2(x− y)

for all x > y in [0, x1].
Then, for any natural n one can construct the bijections

fn : [xn, xn+1] → [xn+1, xn+2] and f−n : [x−n, x−n+1] → [x−n+1, x−n+2]
defined via

fn+1(x) = ax− bf−1
n (x) şi f−1

−n−1(x) =
a

b
x− 1

b
f−n(x).

Finally, for any x ∈ R =
⋃

n∈Z
[xn, xn+1] we have, for some

natural n

either x ∈ [xn, xn+1] and f(x) = fn(x),

or x ∈ [x−n, x−n+1] and f(x) = f−n(x).

II. Assume that f(x) < x for any x ∈ R. Then f−1(x) > x for any
x ∈ R and f−1 can be constructed according to part I.

2. Sufficient conditions for the uniqueness of the solutions

We consider the functional equation

f ◦ f + af + bx = 0, (E1)

where the signs of a and b are taken according to the convention from the
beginning of part 1.

We shall establish what conditions can guarantee the uniqueness of the
continuous solution of this functional equation. More precisely if two so-
lutions coincide on an interval I under some conditions then they coincide
everywhere. We shall see what conditions must fulfill this interval in each
case.

Theorem 2.1. Let us consider the functional equation (E1) in case ∆ > 0.
Then we have:
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a) If 1 < r1 < r2 and two continuous solutions coincide on

I = [a′, b′], I ⊂ (0,∞) and
b′

a′
≥ r2, then they coincide on (0,∞).

A similar result holds if I ⊂ (−∞, 0).
If I = [0, a′], a′ > 0, the solutions coincide on (0,∞). A similar result

holds if I = [a′, 0], a′ < 0.
b) If r2 < r1 < −1 and two continuous solutions coincide on

I = [a′, b′], I ⊂ (0,∞)and
b′

a′
≥ r22 (also if I ⊂ (−∞, 0) and I = [a′, b′] and

a′

b′
≥ r22), then they coincide on R.

If 0 ∈ I the two solutions coincide on R.
c) If r1 < 1 < r2, two solutions f and g having the property that f(0) 6=

0, g(0) 6= 0 and coincide on [0, a′], a′ > 0, coincide on R. We have a similar
result for [a′, 0], a′ < 0.

Proof. Because the solutions are continuous we can use the corresponding
theorems of existence from the previous paragraph.

a) We consider the equation f ◦ f − af + bx = 0 with solutions given by
Theorem 1.2.

Let f and g be two solutions that coincide on [a′, b′], [a′, b′] ⊂ (0,∞). We
shall prove that there exist x0, x1 ∈ [a′, b′] such that the sequence (xn)n∈Z
is that one of Theorem 1.2.

Then we choose x0 = a′ and prove that [x0r1, x0r2] ⊂ [a′, b′]. Indeed
x0r1 > a′ ⇔ x0r1 > x0 ⇔ r1 > 1 and x0r2 < b′ ⇔ b′ > a′r2. These
conditions are fulfilled from the hypothesis. Then, because:

r1(x− y) ≤ f(x)− f(y) ≤ r2(x− y) (α)

(the same for g), we can take f0 = f |[x0,x1] = g|[x0,x1] = g0.
We define (xn)n∈Z like in Theorem 1.2, f0 : [x0, x1]→ [x1, x2] is increas-

ing, bijective and satisfies (α). The same for g0, hence f0 and g0 fulfill the
condition from Theorem 1.2.

We shall prove inductively that fn(x) = gn(x) for x ∈ [xn, xn+1], n ≥ 0,
where fn and gn are those of Theorem 1.2. We shall prove that the functions
obtained in this way are increasing, bijective, continuous and satisfy (α) for
all n ≥ 0.

Let us suppose that fn−1 = gn−1. We have fn(x) = ax − bf−1
n−1(x) and

gn(x) = ax− bf−1
n−1(x). Because f−1

n−1 = g−1
n−1 we have fn(x) = gn(x), for all

x ∈ [xn, xn+1]. Then f = g on [xn, xn+1], i. e. f = g on [x0,∞). Let us prove
now that f−n = g−n, for all n ≥ 0. Assume inductively f−n+1 = g−n+1 (f−n

and g−n are those of Theorem 1.2). But f−1
−n(x) =

1
b

(ax− f−n+1(x)) for

x ∈ [x−n+1, x−n+2] and g−1
−n(x) =

1
b

(ax− g−n+1(x)) for x ∈ [x−n+1, x−n+2].
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Because f−n+1 = g−n+1 we have f−1
−n = g−1

−n, hence f−n(x) = g−n(x), for all
x ∈ [x−n, x−n+1]. Then f−n = g−n, for all n ≥ 0. This means f = g on
(0, x0). So f = g on (0,∞).

Similarly if [a′, b′] ⊂ (−∞, 0) it follows that f = g pe (−∞, 0). Suppose

now I = [0, a′]. We take x1 = a′ and x0 =
a′

r2
and obviously, it follows that

x0, x1 ∈ I.
The proof is similar to the previous one. The same proof for

I = [a′, 0]. Then f = g on (−∞, 0).
b) If r2 < r1 < −1, let us consider the equation

f ◦ f + af + bx = 0

with continuous and decreasing solution which fulfills the condition

−r1(x− y) ≤ f(y)− f(x) ≤ −r2(x− y) (β)

(for x > y). The solutions are given by Theorem 1.3.
Let f , g two solutions that coincide on [a′, b′] ⊂ (0,∞). Let us prove that

there exist x1, x2 ∈ [a′, b′] such that r22x0 ≤ x2 ≤ r21x0 and x1 ∈ [r2x0, r1x0]
such that x2 + ax1 + bx0 = 0.

We choose x0 = a′. We have b′ ≥ a′r22 ⇒ b′ ≥ x0r
2
2.

Because
[
x0r

2
1, x0r

2
2

]
⊂ [a′, b′], we can choose x2 ∈

[
x0r

2
1, x0r

2
2

]
, consequently

x2 ∈ [a′, b′].

x1 = −bx0 − x2

a
≤ −r1r2x0 − x0r

2
1

− (r1 + r2)
=
−x0r1 (r1 + r2)
− (r1 + r2)

= x0r1.

Similar proof for x1 ≥ x0r2, hence the condition x1 ∈ [x0r2, x0r1] is
fulfilled.

Then we can define (xn)n∈Z like in Theorem 1.3.
We can consider f0|[x0,x2] = g0|[x0,x2] = g0 and

f0, g0 : [x0, x2] → [x3, x1] fulfill the conditions from Theorem 1.3. Then we
can define (fn)n∈Z and (gn)n∈Z like in Theorem 1.3. They are decreasing,
continuous, bijective and satisfy (β).

The functions f1 : [x3, x1]→ [x2, x4] and g1 : [x3, x1]→ [x2, x4] are given
by the formulas:

f1(x) = −ax− bf−1
0 (x), g1(x) = −ax− bg−1

0 (x).

Hence f1 = g1 on [x3, x1].
Now suppose inductively that f2n−1 = g2n−1 on [x2n+1, x2n−1] and we

shall prove that f2n = g2n on [x2n, x2n+2], where

f2n−1, g2n−1 : [x2n+1, x2n−1]→ [x2n, x2n+2]
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and

f2n, g2n : [x2n, x2n+2]→ [x2n+3, x2n+1] .

We know that

f2n(x) = −ax− b · f−1
2n−1(x), g2n(x) = −ax− bg−1

2n−1(x).

Then it follows that f2n = g2n on [x2n, x2n+2].
In the same way it can be shown that f2n+1 = g2n+1, where

f2n+1, g2n+1 : [x2n+3, x2n+1]→ [x2n+2, x2n+4]

and f2n+2 = g2n+2, where

f2n+2, g2n+2 : [x2n+2, x2n+4]→ [x2n+5, x2n+3] .

Then fn = gn for all n ≥ 0, i. e. f = g on (−∞, x1] ∪ [x0,∞).
We prove now that f−n = g−n (n ≥ 0). First, we have:

f−1
−1 (x) =

1
b

(−ax− f0(x)) ,

g−1
−1(x) =

1
b

(−ax− g0(x)) ,

where f−1, g−1 : [x1, x−1]→ [x0, x2].
Because f0 = g0 on [x0, x2] it follows thatf−1

−1 = g−1
−1 on [x0, x2], so

f−1 = g−1 pe [x1, x−1]. Now, suppose inductively that f−2n+1 = g−2n+1 on
[x−2n+3, x−2n+1] where

f−2n+1, g−2n+1 : [x−2n+3, x−2n+1]→ [x−2n+2, x−2n+4]

and we shall prove that f−2n = g−2n on [x−2n, x−2n+2]. Indeed

f−1
−2n(x) =

1
b

(−ax− f−2n+1(x)) , g−1
−2n(x) =

1
b

(−ax− g−2n+1(x)) ,

where
f−2n : [x−2n, x−2n+2]→ [x−2n+3, x−2n+1]

and
g−2n : [x−2n, x−2n+2]→ [x−2n+3, x−2n+1] .

Because f−2n+1 = g−2n+1 on [x−2n+3, x−2n+1] it follows that f−1
−2n = g−1

−2n

on [x−2n+3, x−2n+1].
Then f−2n = g−2n on [x−2n, x−2n+2].
Similarly we can prove that f−2n−1 = g−2n−1, where

f−2n−1, g−2n−1 : [x−2n+1, x−2n−1]→ [x−2n, x−2n+2]
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and f−2n−2 = g−2n−2, where

f−2n−2, g−2n−2 : [x−2n−2, x−2n]→ [x−2n+1, x−2n−1] .

Thus it follows that f−n = g−n, for all n ≥ 0.
Then it follows that f = g on (x1, 0) ∪ (0, x0).
Obviously f(0) = g(0) = 0 and so f = g.
Let f and g two solutions which coincide on [a′, b′] ⊂ (−∞, 0). We

shall prove that there exist x1, x3 ⊂ [a′, b′] with x3 ∈
[
x1r

2
2, x1r

2
1

]
and x2 ∈

[x1r1, x1r2], respectively x0 ∈
[
x1

r2
,
x1

r1

]
such that x3 + ax2 + bx1 = 0 and

x2 + ax1 + bx0 = 0.
We choose x1 = b′. Because

[
b′r22, b

′r21
]
⊂ [a′, b′], we can choose x3 ∈[

b′r22, b
′r21
]

and then x3 ∈ [a′, b′].

We choose x2 = −x3 − bx1

a
. We must prove that x2 ∈ [x1r1, x1r2].

But x2 ≤
−x1r

2
2 − r1r2x1

− (r1 + r2)
=
−x1r2 (r1 + r2)
− (r1 + r2)

= x1r2.

Similarly we have: x2 ≥ x1r1.
We choose

x0 =
−ax1 − x2

b
≤ (r1 + r2)x1 − x1r1

r1r2
=
x1

r1
.

Similarly we have: x0 ≥
x1

r2
, hence x1 ∈ [x0r2, x0r1].

So we can define (xn)n∈Z like in Theorem 1.3. Let us prove that f = g
on [x0, x2].

We denote f1 = f |[x3,x1] and g1 = g|[x3,x1]. Obviously f1 = g1.
The functions f1, g1 : [x3, x1] → [x2, x4] are continuous, bijective and

fulfill the relationship (β).
We define the function h : [x3, x1]→ R (we shall see that one can consider

h : [x3, x1]→ [x0, x2])

h(x) = −f1(x) + ax

b
= −g1(x) + ax

b
.

The function h is continuous; because f1 and g1 fulfill (β), it follows that h
fulfills the relationship:

x− y
r1
≤ h(x)− h(y) ≤ x− y

r2
(x > y).

Hence h is decreasing on [x3, x1] and

h(x3) = −f1(x3) + ax3

b
= −x4 + ax3

b
= x2;
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h(x1) = −f1(x1) + ax1

b
= −x2 + ax1

b
= x0.

Therefore h : [x3, x1]→ [x0, x2] is bijective.
We denote f0 = h−1 and g0 = h−1; f0, g0 : [x0, x2] → [x3, x1]. It follows

that f0 = g0 and obviously

f1(x) = −ax− bf−1
0 (x), g1(x) = −ax− bg−1

0 (x).

It is clear that x0r
2
1 ≤ x2 ≤ x0r

2
2.

So f and g coincide on [x0, x2], where (xn)n∈Z is defined like in Theorem
1.3.

Using the same reasoning as in the previous case it will follow that f
and g coincide on R.

c) If r1 < 1 < r2, we consider the equation

f ◦ f − af + bx = 0

with continuous and increasing solutions given by Theorem 1.4 (case f(x) >
x).

Let f and g two solutions which coincide on [0, a′]. It follows from the
hypothesis that f and g have no fixed points.

If f(x) > x, for any x ∈ R it follows that g(x) > x, for any x ∈ R (f and
g coincide on [0, a′]).

We choose x1 = a′, x0 = 0. We can define (xn)n∈Z like in Theorem 1.4;
xn −→

n
∞ and x−n −→

n
−∞.

We can define f0 and g0 like this: f0 = f |[0,x1] and g0 = g|[0,x1]. The
functions f0, g0 : [0, x1]→ [x1, x2] are continuous, bijective and fulfill (α).

Defining (fn)n∈Z like in Theorem 1.4, it will follow that fn are conti-
nuous, bijective and fulfill (α).

Similarly to a) one can prove inductively that fn = gn, for all n ∈ Z.
Therefore f = g on R.

We shall prove now that if f and g coincide on [b′, 0], they coincide on
R (where b′ < 0).

Let (xn)n∈Z the sequence which appears in the construction of the solu-
tion in Theorem 1.4. We choose x0 = 0 and x1 = −b · b′, x1 > 0.
Let us prove that f(x) = g(x) for x ∈ [0,−b · b′].
We have: x1 − ax0 + bx−1 = 0 ; x0 = 0 ⇒ x−1 = b′. Hence, considering
(fn)n∈Z and (gn)n∈Z the functions which appear in the construction of the so-
lution in Theorem 1.4 ; f−1 : [x−1, 0]→ [0, x1] and g−1 : [x−1, 0]→ [0, x1] it
is clear that f−1 = g−1 implies the fact that f−1

−1 (x) = g−1
−1(x) for x ∈ [0, x1].

But

f−1
−1 (x) = −1

b
(ax+ f0(x)), g−1

−1(x) = −1
b

(ax+ g0(x)),
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where f0 : [0, x1]→ [x1, x2]; g0 : [0, x1]→ [x1, x2] . Hence
f0(x) = g0(x), for all x ∈ [0, x1]. According to the fact which has been
proved, it follows that f = g on R.

The case f(x) < x, for all x ∈ R, is similar. 2
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