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1 (LIX) (2010), 47–78

A generalization of convergent series

Ion Chiţescu
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1. Introduction

Throughout the paper R will denote the set of real numbers, C the set of
complex numbers and N the set of natural numbers. We shall write K to
denote R or C.

For any two normed spaces (X, ‖‖), (Y, ||| |||) and any linear and conti-
nuous operator T : X −→ Y , the (operator) norm of T will be

‖T‖o = sup{|||T (x)||| | x ∈ X, ‖x‖ ≤ 1}.

We shall be concerned with the following linear spaces:
1) The space of sequences which converge to zero:

c0 = {x = (x0, x1, ..., xn, ...) | xn ∈ K, xn → 0}

which is a Banach space when equipped with the usual norm

‖x‖ = sup
n
|xn| .

2) The space of convergent series. This is the subspace of c0 defined as
follows:

cc0 =
{
x = (x0, x1, ..., xn, ...) ∈ c0 |

∞∑
n=0

xn is convergent
}

.
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3) The space of absolutely convergent series (the space of summable
sequences). This is the subspace of c0 defined as follows:

l1 =
{
x = (x0, x1, ..., xn, ...) ∈ c0 |

∞∑
n=0

|xn| is convergent
}

.

4) The space of continuous functions. This is the space defined as follows:
One considers two real numbers a, b such that a < b. We obtain the

space

C[a, b] = {f : [a, b]→ K | f is continuous}

which becomes a Banach space when equipped with the norm

‖f‖ = sup{|f(t)| | t ∈ [a, b]}.

5) The space Lp(µ) which is defined as follows:
One considers a number p such that 1 ≤ p <∞. Let us denote by µ the

Lebesgue measure on [0, 1].
We obtain the vector space

Lp(µ) = {f : [0, 1]→ K | f is µ-measurable and |f |p is µ-integrable}

which is seminormed with the seminorm

Np(f) =
(∫

|f |p dµ
) 1

p

.

The null space of Lp(µ) is

N (µ) = {f ∈ Lp(µ) | Np(f) = 0} = {f : [0, 1]→ K | f(t) = 0 µ-a.e.}.

The quotient space

Lp(µ)
def
= Lp(µ)/N (µ)

is a Banach space, when equipped with the (quotient) norm∥∥∥f̃∥∥∥
p

def
= Np(f)

for any representative f ∈
∼
f ∈ Lp(µ).

For general Analysis see [7]. For general Functional Analysis see [3], [4],
[6] and [8]. For Measure Theory see [1], [2] and [5]. For Spectral Theory see
[3] and [6].
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2. Results

We start with a remark which motivates the subsequent facts.
Let us consider the numerical series

∞∑
n=0

xn (2.1)

with terms in K = R or C. Cauchy’s criterion asserts that the convergence
of (2.1) is equivalent to the following fact: for any ε > 0, there exists a
natural p(ε) such that for any natural p ≥ p(ε) and any natural n, one has

|xp + xp+1 + ...+ xp+n| < ε. (2.2)

In order to give an alternative expression for (2.2), we introduce the shift
operator S : c0 → c0 (which is linear, continuous and ‖S‖o = 1) given via

S((x0, x1, x2, ..., xn, ...)) = (x1, x2, ..., xn, ...).

Let us write Sm = S ◦ S ◦ ... ◦ S (m times) and S0 = I = the identity
operator of c0. Now, (2.2) becomes: for any ε > 0, there exists a natural
p(ε) such that for any natural p ≥ p(ε) and any natural n, one has

‖Sp(xn)‖ < ε. (2.3)

Here, for x = (x0, x1, x2, ..., xn, ...) ∈ c0 from (2.1), we write

xn = x+ S(x) + S2(x) + ...+ Sn(x), x0 = x.

Taking into account the structure of (2.2) and (2.3), we have the following
result for x ∈ c0:

x ∈ cc0 ⇐⇒ lim
p
Sp(xn) = 0

uniformly with respect to n ∈ N.
Having this in mind, we shall (from now on) consider a Banach space

over K (real or complex) equipped with the norm x → ‖x‖. We shall also
consider a linear and continuous operator S : X → X and I : X → X is
the identity operator. For an element x ∈ X, we shall write x0 = x and, for
natural n ≥ 1:

xn = x+ S(x) + S2(x) + ...+ Sn(x) = (I + S + S2 + ...+ Sn)(x),

where
Sn = S ◦ S ◦ ... ◦ S (n times),

S0 = I.
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Definition 2.1. An element x ∈ X is called S-convergent series if it has
the property that

lim
p
Sp(xn) = 0 (2.4)

uniformly with respect to n ∈ N. Here (2.4) means: for any ε > 0, there
exists a natural p(ε), such that for any natural p ≥ p(ε) and any natural n,
one has

‖Sp(xn)‖ < ε.

The set of all S-convergent series will be denoted by C(S).

It is easily seen that C(S) is a linear subspace of X and C(S) ⊃ Ker(S).

Theorem 2.1. For an element x ∈ X, the following assertions are equiva-
lent:

1. One has x ∈ C(S).

2. The series
∞∑
p=0

Sp(x) is convergent (in X).

Proof. The series in the statement is convergent if and only if the sequence( m∑
p=0

Sp(x)
)
m

is Cauchy. This is equivalent to the following fact: for any

ε > 0, there exists p(ε) ∈ N, such that, for any natural p ≥ p(ε) and any
natural n ≥ 1, one has∥∥∥∥p+n∑

m=0

Sm(x)−
p∑

m=0

Sm(x)
∥∥∥∥ =

∥∥Sp+1(xn−1)
∥∥ < ε.

The last assertion is precisely the assertion that

lim
p
Sp(xn) = 0

uniformly with respect to n ∈ N. 2

Using Theorem 2.1 we get

Proposition 2.1. For an element x ∈ X, the following assertions are
equivalent:

1. One has x ∈ C(S).
2. There exists a natural p such that Sp(x) ∈ C(S).
3. For any natural p one has Sp(x) ∈ C(S).
Consequently, C(S) is a linear subspace of X, which is invariant with

respect to S (and, of course, Ker(S) ⊂ C(S)). We shall see (Example 3.1)
that, generally speaking, C(S) can be not closed.

How large is C(S)? The following theorem answers this question.
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Theorem 2.2. Either C(S) = X or C(S) is of the first Baire category (i.e.
C(S) is meager).

Proof. Let us assume that C(S) 6= X. We must prove that C(S) is of the
first category. Accepting the contrary, we shall arrive at a contradiction.

So let us assume that C(S) is of the second category. We construct the
sequence of linear and continuous operators (Tn)n given via

Tn = I + S + S2 + ...+ Sn

with T0 = I. According to the definition of C(S), the sequence (Tn)n con-
verges pointwise on C(S) which is of the second category. Using the Banach-
Steinhaus theorem we get the fact that the sequence (Tn)n converges point-
wise on all of X and the pointwise limit is a linear and continuous operator
(see [8], p. 84 Corollary and p. 86 Corollary or see [3]). In other words, the

series
∞∑
n=0

Sn(x) converges for all x ∈ X, hence C(S) = X, contradiction. 2

In order to continue, we define the linear map TS : C(S)→ X, given via

TS(x) =
∞∑
n=0

Sn(x).

Theorem 2.3. 1. The map TS is injective.
2. For any x ∈ C(S), one has

(I − S)(TS(x)) = x.

Consequently

C(S) = (I − S)(TS(C(S))) ⊂ (I − S)(X).

3. The following assertions are equivalent:
a) One has

(I − S)(X) = C(S).

b) For any x ∈ X there exists the limit

lim
n
Sn(x).

In this case, for any x ∈ X one has

TS((I − S)(x)) = x− lim
n
Sn(x).

4. The following assertions are equivalent:
a) The map TS is a bijection.
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b) For any x ∈ X one has

lim
n
Sn(x) = 0.

In this case, considering the map (I − S)1 : X → C(S), given via (see
3.)

(I − S)1(x) = (I − S)(x),

one has
(I − S)1 = T−1

S .

Proof. 1. Let x ∈ C(S) such that

TS(x) = 0.

So

0 = TS(x) = x+S(x+S(x)+S2(x)+...+Sn(x)+...) = x+S(TS(x)) = x+0,

hence
x = 0.

2. Let x ∈ C(S).
Again

TS(x) = x+ S(TS(x)),

hence
x = TS(x)− S(TS(x)) = (I − S)(TS(x)).

We proved that any x ∈ C(S) has the form

x = (I − S)(TS(x)),

hence
C(S) ⊂ (I − S)(TS(C(S))).

Conversely, let y ∈ (I − S)(TS(C(S))). We can find x ∈ C(S) such that

y = (I − S)(TS(x)) = x

and the inclusion
(I − S)(TS(C(S))) ⊂ C(S)

is also true.
3. a)⇒b). In view of 2., hypothesis a) means that

(I − S)(X) ⊂ C(S).

Let x ∈ X be arbitrary. Because (I − S)(x) ∈ C(S), we can compute

TS(x−S(x)) = lim
n

[
(x−S(x))+S(x−S(x))+S2(x−S(x))+...+Sn(x−S(x))

]
=
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= lim
n

(x− Sn+1(x)),

hence lim
n
Sn(x) exists and one has

TS((I − S)(x)) = x− lim
n
Sn(x). (2.5)

b)⇒a). We must prove that

(I − S)(X) ⊂ C(S).

Let us choose x ∈ X. Using the hypothesis, there exists

lim
n

(
x− Sn+1(x)

)
.

But we have seen that

x−Sn+1(x) = (x−S(x)) +S(x−S(x)) +S2(x−S(x)) + ...+Sn(x−S(x))

which implies that the series

∞∑
n=0

Sn(x− S(x))

is convergent and so
x− S(x) ∈ C(S).

The equality in the statement is given by (2.5).
4. a)⇒b). Let y ∈ X. We must prove that

lim
p
Sp(y) = 0.

To this end, let us take an arbitrary ε > 0. Because TS is surjective, we
find x ∈ C(S) such that y = TS(x). Hence, for any p ∈ N, one has

Sp(y) = Sp(TS(x)) = lim
n

(Sp(x) + Sp+1(x) + ...+ Sp+n(x)).

Because x ∈ C(S), the series

∞∑
n=0

Sn(x)

is convergent.
Using Cauchy’s criterion, we can find a natural p(ε) such that, for any

natural p ≥ p(ε) and any natural n, one has∥∥Sp(x) + Sp+1(x) + ...+ Sp+n(x)
∥∥ < ε.
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Let us fix such a p ≥ p(ε). It is possible to pass to n-limit in the last
inequality and we find

‖Sp(y)‖ = lim
n

∥∥Sp(x) + Sp+1(x) + ...+ Sp+n(x)
∥∥ ≤ ε

proving that
lim
p
Sp(y) = 0.

b)⇒a). One must prove that TS (which is injective, see 1.) is surjective.
Let x ∈ X. According to 3. one has

(I − S)(X) = C(S)

and
y = (I − S)(x) ∈ C(S).

Again 3. says that

TS(y) = TS((I − S)(x)) = x− lim
n
Sn(x) = x.

Hence
x = TS(y)

and TS is surjective.
Now, accepting that TS is bijective, we use again 3. and notice that, for

any x ∈ X, one has

TS ◦ (I − S)1(x) = x− lim
n
Sn(x) = x.

On the other hand, we can rephrase 2. as follows: for any x ∈ C(S), one
has

(I − S)1 ◦ TS(x) = x.

The last two equalities show that

(I − S)1 = T−1
S .

2

The results obtained at point 4. can be rephrased as follows (we work
for K = C):

Corollary 2.1. Assume that for any x ∈ S one has

lim
n
Sn(x) = 0.

Then, we have three possibilities:
1. If C(S) = X (i.e. (I−S)(X) = X) it follows that 1 is in the resolvent

set of S (and TS = (I − S)−1).
2. If C(S) 6= X, but C(S) = X, it follows that 1 is in the continuous

spectrum of S (and the map TS : C(S)→ X is not continuous).
3. If C(S) 6= X and C(S) 6= X, it follows that 1 is in the residual

spectrum of S.
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Using the previous result for operators on finite dimensional spaces, we
obtain

Corollary 2.2. Let us assume that X is a finite dimensional vector space
over C. Let also S : X → X be a linear operator.

The following assertions are equivalent:
1) One has

lim
n
Sn(x) = 0,

for all x ∈ X.
2) For any x ∈ X, the series

∞∑
n=0

Sn(x)

is convergent.

Proof. It is clear that 2)⇒1). In order to prove 1)⇒2) we use Corollary
2.1. Possibilities 2. and 3. cannot happen, because the continuous spectrum
and the residual spectrum of S are empty. It follows that possibility 1 is
valid, consequently C(S) = X, which is precisely 2). 2

Before passing further, we think it will be useful to see how Theorem 2.3
works in a particular case.

Example 2.1. We consider a non null Banach space X and a number α ∈
K. The operator S : X → X will be given via

S(x) = αx.

a) It is seen that

C(S) = {x ∈ X | there exists lim
n

(1 + α+ α2 + ...+ αn)x}.

Hence

C(S) =
{
{0}, if |α| ≥ 1
X, if |α| < 1

.

b) TS : C(S)→ X is given via

TS(x) =
{

0, if |α| ≥ 1
1

1−αx, if |α| < 1 .

The equality (valid for x ∈ C(S))

(I − S)(TS(x)) = x
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is readily checked.
c) For any α ∈ K, one has

(I − S)(X) = (1− α)(X) ⊃ C(S).

For |α| < 1, one has (1 − α)(X) = X. For |α| ≥ 1, α 6= 1, one has
(1− α)(X) = X. Finally, for α = 1, one has C(S) = {0} and (1− α)(X) =
{0}.

d) For any x ∈ X and n ∈ N, one has

Sn(x) = αnx.

The limit
lim
n
αnx

exists for any x ∈ X if and only if |α| < 1 or α = 1. It is seen that
(1− α)(X) = C(S) in all these cases:

(1− α)(X) =
{
X = C(S), if |α| < 1
{0} = C(S), if α = 1

.

The equality (for |α| < 1 or α = 1)

TS((I − S)(x)) = x− lim
n
Sn(x),

valid for all x ∈ X, is readily checked.
Namely, in case |α| < 1 one has

TS((I − S)(x)) =
1

1− α
(1− α)x = x = x− lim

n
αnx

and in case α = 1 one has

TS((I − S)(x)) = TS(x− x) = TS(0) = 0 = x− lim
n

1nx.

In case α = 1 one can see that TS : {0} → X is not a bijection.
e) One has

lim
n
Sn(x) = 0

for any x ∈ X if and only if |α| < 1. In this case C(S) = X and TS : X → X
is the bijection given via

TS(x) =
1

1− α
x.

In the rest of the paragraph we shall work for K = R and we shall
make the supplementary assumptions that X is a Riesz space and S is a
positive operator. One can see that the real space c0 and the shift operator
S : c0 → c0 fulfill these assumptions.
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Definition 2.2. An element x ∈ X is called an S-absolutely convergent
series in case |x| ∈ C(S).

The set of S-absolutely convergent series will be denoted by AC(S).

Theorem 2.4. The set AC(S) is a linear subspace of C(S) which is invari-
ant with respect to S.

Generally speaking, the inclusion AC(S) ⊂ C(S) is strict and AC(S)
may not be closed (see Example 3.1).

Proof. a) We prove the inclusion

AC(S) ⊂ C(S).

Let x ∈ AC(S). For an arbitrary ε > 0, we can find a natural p(ε) such
that, for any natural p ≥ p(ε) and any natural n, one has

‖Sp(|x|n)‖ < ε.

We have successively, for natural p and n:

|Sp(xn)| =
∣∣Sp(x+ S(x) + S2(x) + ...+ Sn(x))

∣∣ ≤
≤ Sp(|x|+ |S(x)|+

∣∣S2(x)
∣∣+ ...+ |Sn(x)|) ≤

≤ Sp(|x|+ S(|x|) + S2(|x|) + ...+ Sn(|x|)) = Sp(|x|n).

Hence, for p ≥ p(ε) and n ∈ N we get

‖Sp(xn)‖ = ‖ |Sp(xn)| ‖ ≤ ‖Sp(|x|n)‖ < ε.

b) It is immediate that x ∈ AC(S) ⇒ Sp(x) ∈ AC(S) for any p ∈ N,
because, if q ∈ N, one has

Sq(|Sp(x)|) ≤ Sq(Sp(|x|)) = Sq+p(|x|)

which implies∥∥Sq(|Sp(x)|) + Sq+1(|Sp(x)|) + ....+ Sq+n(|Sp(x)|)
∥∥ ≤

≤
∥∥Sp+q(|x|) + Sp+q+1(|x|) + ....+ Sp+q+n(|x|)

∥∥ .

c) If x, y are in AC(S), we shall prove that x+ y ∈ AC(S).
Indeed, for any natural n:

|x+ y|n = |x+ y|+ S(|x+ y|) + S2(|x+ y|) + ...+ Sn(|x+ y|) ≤

≤ |x|+|y|+S(|x|)+S(|y|)+S2(|x|)+S2(|y|)+...+Sn(|x|)+Sn(|y|) = |x|n+|y|n .
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This implies, for natural p and n:

Sp(|x+ y|n) ≤ Sp(|x|n) + Sp(|y|n) a.s.o.

Now, if x is in AC(S) and α ∈ R, we shall prove that αx ∈ AC(S).
Indeed, for any natural n:

|αx|n = |α| |x|n

and for any natural p and n:

Sp(|αx|n) = |α|Sp(|x|n) a.s.o.

2

Theorem 2.5. (Generalized D’Alembert Criterion) Let x ∈ X. Assume
there exists 0 < a < 1 such that there exists M ∈ N having the property∣∣Sn+1(x)

∣∣ ≤ a |Sn(x)|

for all n ≥M .
Then x ∈ C(S).

Proof. Let us take n ≥M . Then we have successively:∣∣Sn+1(x)
∣∣ ≤ a |Sn(x)| ⇒

∥∥Sn+1(x)
∥∥ ≤ a ‖Sn(x)‖∣∣Sn+2(x)

∣∣ ≤ a ∣∣Sn+1(x)
∣∣ ≤ a2 |Sn(x)| ⇒

∥∥Sn+2(x)
∥∥ ≤ a2 ‖Sn(x)‖

...∣∣Sn+p(x)
∣∣ ≤ ap |Sn(x)| ⇒

∥∥Sn+p(x)
∥∥ ≤ ap ‖Sn(x)‖ .

Hence, one has

‖Sn(x)‖+
∥∥Sn+1(x)

∥∥+
∥∥Sn+2(x)

∥∥+ ...+ ‖Sn+p(x)‖ ≤
≤ (1 + a+ a2 + ...+ ap) ‖Sn(x)‖

and the series
∞∑
n=0

Sn(x) converges absolutely. 2

In order to introduce the next results, it will be necessary to supplement
our assumptions with the following ones:

A1. The space X is an algebra, with multiplication

(x, y)→ xy

and with the property that, for any x, y in X one has

|xy| ≤ ‖x‖ |y|
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and
|xy| ≤ ‖y‖ |x| .

This implies
‖xy‖ ≤ ‖x‖ ‖y‖ ,

hence X is a Banach algebra.

A2. The operator S : X → X is multiplicative, i.e.

S(xy) = S(x)S(y)

for any x, y in X.
Consequently, S is an algebra morphism.

A3. For any x ∈ X one has

lim
n
Sn(x) = 0.

One can see that the real space X = c0, with natural multiplication

((x0, x1, ..., xn, ..), (y0, y1, ..., yn, ..))→ (x0y0, x1y1, ..., xnyn, ..)

and the shift operator S : c0 → c0 satisfy assumptions A1, A2 and A3.

Theorem 2.6. (Generalized Abel-Dirichlet Criterion) Assume A1, A2 and
A3 are fulfilled. Then, for any x ∈ C(S) and any a ∈ X with the property
a ≥ S(a), one has ax ∈ C(S) and xa ∈ C(S).

Proof. We begin with an algebraic property.
Let A be a ring and a0, a1, ..., an+1; b0, b1, ..., bn+1, n ≥ 0, elements in A.

Then we have the identities

a0b0 + a1b1 + ...+ anbn =

=
n∑
i=0

(ai − ai+1)(b0 + b1 + ...+ bi) + an+1(b0 + b1 + ...+ bn) (2.6)

and

a0b0 + a1b1 + ...+ anbn =

=
n∑
i=0

(a0 + a1 + ...+ ai)(bi − bi+1) + (a0 + a1 + ...+ an)bn+1. (2.7)

The proof can be done by induction with respect to n.
We shall take x ∈ C(S) and a ∈ X such that a ≥ S(a) and we shall

prove that ax ∈ C(S), using (2.6). The fact that xa ∈ C(S) can be proved
in a similar way, using (2.7).

In order to make things shorter, we shall write

ax+ S(ax) + S2(ax) + ...+ Sp(ax) =
∑

(p),
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for any natural p.
Let ε > 0. We shall find a natural p(ε) such that for any natural n >

m ≥ p(ε) one has ∥∥∥∑(n)−
∑

(m)
∥∥∥ < ε (?)

and this will prove the convergence of the series

∞∑
n=0

Sn(ax)

which means ax ∈ C(S).
Using (2.6) and the fact that∑

(p) = ax+ S(a)S(x) + S2(a)S2(x) + ...+ Sp(a)Sp(x)

we can write∑
(n) =

n∑
i=0

(Si(a)− Si+1(a))(x+ S(x) + ...+ Si(x))+

+Sn+1(a)(x+ S(x) + ...+ Sn(x)).

Consequently, for n > m ≥ 0 one has

∑
(n)−

∑
(m) =

n∑
i=m+1

(Si(a)− Si+1(a))(x+ S(x) + ...+ Si(x))+

+Sn+1(a)(x+ S(x) + ...+ Sn(x))−
−Sm+1(a)(x+ S(x) + ...+ Sm(x)) =

=
n∑

i=m+1
(Si(a)− Si+1(a))xi + Sn+1(a)xn − Sm+1(a)xm.

It follows that

|
∑

(n)−
∑

(m)| ≤
∣∣Sn+1(a)xn

∣∣+
∣∣Sm+1(a)xm

∣∣+
+

n∑
i=m+1

∣∣(Si(a)− Si+1(a))xi
∣∣ ≤

≤
∥∥Sn+1(a)

∥∥ |xn|+ ∥∥Sm+1(a)
∥∥ |xm|+

+
n∑

i=m+1

∥∥xi∥∥ ∣∣Si(a)− Si+1(a)
∣∣ .

(2.8)

Due to the fact that x ∈ C(S), we can find a number M > 0 such that

‖xp‖ < M , (2.9)

for any natural p.
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From (2.8) we obtain

|
∑

(n)−
∑

(m)| ≤
∥∥Sn+1(a)

∥∥ |xn|+ ∥∥Sm+1(a)
∥∥ |xm|+

+M
n∑

i=m+1

∣∣Si(a)− Si+1(a)
∣∣ . (2.10)

But a ≥ S(a) implies Si(a) ≥ Si+1(a) and (2.10) becomes

|
∑

(n)−
∑

(m)| ≤
∥∥Sn+1(a)

∥∥ |xn|+ ∥∥Sm+1(a)
∥∥ |xm|+

+M
n∑

i=m+1
(Si(a)− Si+1(a)) =

= M(Sm+1(a)− Sn+1(a)) +
∥∥Sn+1(a)

∥∥ |xn|+ ∥∥Sm+1(a)
∥∥ |xm| ≤

≤M(
∣∣Sm+1(a)

∣∣+
∣∣Sn+1(a)

∣∣) +
∥∥Sn+1(a)

∥∥ |xn|+ ∥∥Sm+1(a)
∥∥ |xm| .

Taking the norms we get:

‖
∑

(n)−
∑

(m)‖ ≤M(
∥∥Sm+1(a)

∥∥+
∥∥Sn+1(a)

∥∥)+

+
∥∥Sn+1(a)

∥∥ ‖xn‖+
∥∥Sm+1(a)

∥∥ ‖xm‖ .

Using (2.9), we get∥∥∥∑(n)−
∑

(m)
∥∥∥ ≤ 2M(

∥∥Sm+1(a)
∥∥+

∥∥Sn+1(a)
∥∥), (2.11)

for any n > m ≥ 0.
Because of the assumption A3, for the already taken ε > 0 we can find

a natural p(ε) such that, for any p ≥ p(ε) one has∥∥Sp+1(a)
∥∥ < ε

4M
.

Consequently, for natural n > m ≥ p(ε), we obtain from (2.11) exactly
(?). 2

The following result is also concerned with the multiplicative structure
of X.

Theorem 2.7. Assume A1 is fulfilled. Then AC(S) is a bilateral ideal in
X.

Proof. We have already seen that AC(S) is a subspace of X. It remains to
be proved that, for any a ∈ AC(S) and any x ∈ X, one has ax ∈ AC(S) and
xa ∈ AC(S). We shall do the proof for ax, the proof for xa being similar.

For any n > m ≥ 0 one has∣∣Sm(|ax|) + Sm+1(|ax|) + ...+ Sn(|ax|)
∣∣ =



62 Ion Chiţescu

= Sm(|ax|) + Sm+1(|ax|) + ...+ Sn(|ax|) ≤

≤ Sm(‖x‖ |a|) + Sm+1(‖x‖ |a|) + ...+ Sn(‖x‖ |a|) =

= ‖x‖ (Sm(|a|) + Sm+1(|a|) + ...+ Sn(|a|)). (2.12)

Because the series
∞∑
n=0

Sn(|a|)

converges, we find p(ε) such that, for any n > m ≥ p(ε) one has

‖x‖
∥∥Sm(|a|) + Sm+1(|a|) + ...+ Sn(|a|)

∥∥ < ε.

Let us take n > m ≥ p(ε). Using (2.12), we get∥∥Sm(|ax|) + Sm+1(|ax|) + ...+ Sn(|ax|)
∥∥ ≤

≤ ‖x‖
∥∥Sm(|a|) + Sm+1(|a|) + ...+ Sn(|a|)

∥∥ < ε

and this proves that the series
∞∑
n=0

Sn(|ax|)

converges a.s.o. 2

3. Examples

Example 3.1. (Seminal Example) Actually, we began the preceding para-
graph with this example, which motivates the present paper.

We take X = c0 and S : X → X is the shift operator, given via

S(x) = y,

where, if
x = (x0, x1, ..., xn, ..)

one has
y = (x1, x2, ..., xn, ..).

It is easy to see that S is linear, continuous and ‖S‖o = 1.
Rephrasing the considerations from the beginning of the preceding para-

graph, we get
C(S) = cc0 = the convergent series.

At the same time (working for the real case), we have

AC(S) = l1 = the absolutely convergent series.

We have already seen that (in the real case) the space X = c0 and the
shift operator S fulfill assumptions A1, A2 and A3.



A generalization of convergent series 63

a) We prove that C(S) = cc0 is dense in X = c0 (hence C(S) is not
closed). The same proof shows (in case K = R) that AC(S) = l1 is dense
in c0 (hence AC(S) is not closed).

To this end, we pick an arbitrary x = (xn)n ∈ c0. The sequence (y(n))n
will be constructed as follows:

y(0) = (x0, 0, 0, ..., 0, ..)

y(1) = (x0, x1, 0, ..., 0, ..)

...

y(n) = (x0, x1, ..., xn, 0, 0, ..., 0, ...).

Then y(n) ∈ cc0 and (in case K = R) y(n) ∈ l1.
On the other hand, one can see that, for any n:

‖y(n)− x‖ = sup
p>n
|xp| →

n
0,

thus finishing the proof.

b) We shall compute the values of TS : cc0 → c0.

Let us take an arbitrary element

x = (x0, x1, ..., xn, ..) ∈ c0

and write

t(x) =
∞∑
n=0

xn

and
σn = x0 + x1 + ...+ xn,

for any n ∈ N.
We shall prove that

TS(x)
def
= x∞ = (t(x), t(x)− x0, t(x)− (x0 + x1), ..., t(x)− σn−1, ..).

Because
TS(x) = lim

p
xp

it remains to be proved that

lim
p
‖xp − x∞‖ = 0.

The n-th component of xp is equal to

xn + xn+1 + ...+ xn+p
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and the n-th component of x∞ is equal to

t(x)− σn−1,

hence the n-th component of xp − x∞ is equal to

xn + xn+1 + ...+ xn+p − t(x) + σn−1 = σn+p − t(x).

It follows that, for any p one has

‖xp − x∞‖ = sup
n
|σn+p − t(x)| .

Taking an arbitrary ε > 0, we can find p(ε) ∈ N such that, for any
q ≥ p(ε) one has

|σq − t(x)| < ε

and this implies
‖xp − x∞‖ ≤ ε,

for any p ≥ p(ε).
c) It is obvious that, for any x ∈ X = c0, one has

lim
n
Sn(x) = 0.

Consequently, Theorem 2.3 implies the fact that (I − S)1 : X → C(S)
is bijective. Hence I − S : c0 → c0is injective and (I − S)(c0) = cc0 which
is dense in c0. Therefore 1 is in the continuous spectrum of S and TS is
discontinuous (Corollary 2.1).

d) The discontinuity of TS can be proved in another way.

Namely, we shall prove that the functional L : cc0 → K, given via

L(x) = t(x)

is discontinuous.
Accepting this fact, the discontinuity of TS follows from the relation

L = π0 ◦ TS ,

where π0 : c0 → K is the (linear and continuous) projection number zero
given via

π0((xn)n) = x0.

Now, let us turn to the proof of the fact that L is discontinuous. We
must prove the existence of an ε0 > 0 having the property that, for any
δ > 0 one can find x ∈ cc0 with ‖x‖ ≤ δ and yet |L(x)| > ε0.
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To this end we can begin with an arbitrary ε0 > 0. Let also δ > 0 be
arbitrarily taken. We consider y = (yn)n a semiconvergent series with real
terms, e.g.

y =
(

(−1)n

n+ 1

)
n≥0

.

One can find n(δ) ∈ N such that, for any n ≥ n(δ) one has |yn| < δ.
We construct the semiconvergent series z = (zn)n≥0, where z0 = yn(δ),
z1 = yn(δ)+1, ..., zn = yn(δ)+n, ... and, of course, ‖z‖ ≤ δ.

Using Riemann’s permutation theorem, we can find a permutation π :
N→ N such that the series

x = (zπ(0), zπ(1), ..., zπ(n), ...)

has the sum equal to ε0 +1. Hence ‖x‖ ≤ δ and |L(x)| = L(x) = ε0 +1 > ε0.

e) Because TS : cc0 → c0 is a bijection, as we have seen, we have on cc0
two norms.

The first norm on cc0 is the norm induced by the norm of c0, having the
analytical expression

‖x‖ = sup
n
|xn| ,

where
x = (x0, x1, ..., xn, ...).

With respect to this norm, cc0 is not a Banach space (because cc0 is not
closed in c0).

The second norm on cc0 is obtained via TS-transport from the norm of
c0. For x ∈ cc0, this norm will be

|‖x‖| def= ‖TS(x)‖ .

Hence, the analytical expression of this norm will be

|‖x‖| = sup{|t(x)| , |t(x)− σ0| , |t(x)− σ1| , ..., |t(x)− σn| , ...}

with previous notations. With respect to this norm, cc0 is a Banach space.

f) Now we shall see that Theorem 2.5 generalizes D’Alembert’s criterion.

Namely, we consider a ”series” x = (xn)n ∈ cc0 and assume that the
hypothesis of Theorem 2.5 is fulfilled.

We have, for any natural n:

Sn+1(x) = (xn+1, xn+2, ...)

and
Sn(x) = (xn, xn+1, ...).
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Hence, the hypothesis says that there exist 0 < a < 1 and M ∈ N such
that

An+1 = sup
p≥n+1

|xp| ≤ a sup
p≥n
|xp| = aAn,

for all n ≥M .
In case An+1 = An it follows that An = An+1 = 0 for all n ≥ M , hence

xn = 0 for all n ≥M and the series

∞∑
n=0

xn (3.1)

converges (trivially).
So, the case when some An = 0 is trivial and let us see what happens

when An > 0 for all n.
It follows that, for all n ≥M , one has

0 < An+1 ≤ aAn,

hence
0 < An+1 < An,

and, consequently

An = sup
p≥n
|xp| = sup

p=n
|xp| = |xn| .

Then, for all n ≥M , one has

sup
p≥n+1

|xp| ≤ a |xn|

which implies
|xn+1| ≤ a |xn| (3.2)

and the series (3.1) converges.
In case all the xn are non null, we can write (3.2) in the form: for all

n ≥M ∣∣∣∣xn+1

xn

∣∣∣∣ ≤ a (3.3)

and this implies (of course)

lim sup
n

∣∣∣∣xn+1

xn

∣∣∣∣ ≤ a < 1. (3.4)

It is readily seen that, in case (3.4) is fulfilled, one can find a natural M ,
such that, for all n ≥M , one has (3.3). This completes the proof of the fact
that Theorem 2.5 is exactly D’Alembert’s criterion in this special case.
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g) At this point we begin with the remark that Theorem 2.7 is applicable.
Hence l1 is a bilateral ideal in c0.
Finally, we shall be concerned with Theorem 2.6 in this particular case.

Interpreting the result we obtain the following

FACT. Assume a = (an)n is a decreasing sequence which converges to
zero. Let (xn)n be a sequence such that the series

∞∑
n=0

xn

is convergent.
Then, the series

∞∑
n=0

anxn

is convergent.

This Fact is equivalent to the apparently more general following result:

Abel-Dirichlet Criterion Let (bn)n be a decreasing sequence which is
bounded. Let (xn)n be a sequence such that the series

∞∑
n=0

xn

is convergent.
Then, the series

∞∑
n=0

bnxn

is convergent.

Indeed, assuming the validity of the Fact, let us write, for b = lim
n
bn:

bn = an + b,

where an = bn − b.
Then (an)n is decreasing and converges to 0.
It follows that the series

∞∑
n=0

anxn

converges.
Because the series

∞∑
n=0

bxn
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converges too, it follows that the sum of the preceding series, i.e. the series

∞∑
n=0

bnxn

is convergent.

We proved that Theorem 2.6 generalizes the Abel-Dirichlet Criterion.

Example 3.2. We consider an arbitrary Banach space X. Let X1 and X2

be two closed subspaces of X which are complementary (i.e. each element
x ∈ X can be written uniquely in the form

x = x1 + x2,

with x1 ∈ X1 and x2 ∈ X2).
We consider the linear and continuous projections Pi : X → X associated

with Xi, i = 1, 2 (i.e. Pi is given via

Pi(x) = xi,

for i ∈ {1, 2}).
Let us take S = P1. Then I − S = P2. Because Sn = S for any natural

n ≥ 1, we use Theorem 2.3 and get

C(S) = (I − S)(X) = P2(X) = X2.

For any x ∈ X2 = C(S), one has

Sn(x) = 0,

for any natural n ≥ 1, hence

TS(x) =
∞∑
n=0

Sn(x) = x = x− lim
n
Sn(x).

Example 3.3. Let us consider the real numbers a < b. The Banach space
will be X = C[a, b]. The operator S : X → X will be defined as follows:

S(f) = g,

where g : [a, b]→ K is given via

g(x) =

x∫
a

f(t)dt.

It is seen that S is linear, continuous and ‖S‖o = b− a.
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The last assertions follow from the inequality

∣∣∣∣
x∫
a

f(t)dt
∣∣∣∣ ≤

b∫
a

|f(t)| dt ≤ (b− a) ‖f‖ ,

which is valid for any x ∈ [a, b], and from the fact that

‖S(u)‖ = b− a,

where u is the constant function equal to 1.
It is known that, for any f ∈ X and any natural n ≥ 1, one has

Sn(f) = g,

where g : [a, b]→ K is given via

g(x) =

x∫
a

(x− t)n−1

(n− 1)!
f(t)dt.

a) We claim that one has (see also Corollary 2.1, 1.)

C(S) = X.

Indeed, for any f ∈ X, any n ≥ 1 and any x ∈ [a, b], we have successively

|Sn(f)(x)| =
∣∣∣∣
x∫
a

(x− t)n−1

(n− 1)!
f(t)dt

∣∣∣∣ ≤
b∫
a

|x− t|n−1

(n− 1)!
‖f‖ dt ≤

≤
b∫
a

|b− a|n−1

(n− 1)!
‖f‖ dt =

|b− a|n

(n− 1)!
‖f‖ = an.

Because the series
∞∑
n=1

an

is convergent (with sum (b−a)eb−a ‖f‖) it follows that the series of functions

∞∑
n=0

Sn(f)

converges uniformly and absolutely, hence converges in X.
Working for K = R, it is seen that

AC(S) = X.
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As a consequence (see Theorem 2.3), we have the linear and continuous
operators I − S : X → X and TS : X → X and

TS = (I − S)−1.

b) It is possible to express TS more concretely.
To this end, we take an arbitrary f ∈ X and an arbitrary x ∈ [a, b]. Due

to the uniform convergence, we get

TS(f)(x) = f(x) +
∞∑
n=1

Sn(f)(x) =

= f(x) +
∞∑
n=1

x∫
a

(x− t)n−1

(n− 1)!
f(t)dt = f(x) +

x∫
a

∞

(
∑
n=0

(x− t)n

n!
)f(t)dt =

= f(x) +

x∫
a

ex−tf(t)dt.

We used the fact that, for fixed x ∈ [a, b], the series of functions

∞∑
n=1

ϕx,n

converges uniformly on [a, x], where

ϕx,n(t) =
(x− t)n−1

(n− 1)!
f(t)

(
because

∣∣ϕx,n(t)
∣∣ ≤ (x− a)n−1

(n− 1)!
‖f‖

)
.

Taking into account the previous facts, we proved that

TS = (I − S)−1 = I + V .

Here S : X → X is the linear and continuous integral operator with
kernel Q : [a, b]2 → K given via

Q(x, t) =
{ 0, if x < t

1, if x ≥ t

(it is clear that, for any x ∈ [a, b], one has

S(f)(x) =

b∫
a

Q(x, t)f(t)dt).
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Also V : X → X is the linear and continuous integral operator with
kernel P : [a, b]2 → K given via

P (x, t) =
{ 0, if x < t
ex−t, if x ≥ t

(namely, for any x ∈ [a, b], one has

V (f)(x) =

b∫
a

P (x, t)f(t)dt).

Remark 3.1. One can obtain TS = (I − S)−1 in another way.

Let us give an arbitrary f ∈ X = C(S). We want to obtain g ∈ X such
that g = TS(f), i.e. f = (I − S)(g). Writing y : [a, b]→ K,

y(x) =

x∫
a

g(t)dt

(i.e. y = S(g)) it is seen that y is the solution of the Cauchy problem

y
′

= g and y(a) = 0.

The relation f = (I − S)(g) becomes the differential equation (Cauchy
problem)

y
′ − y = f

with the initial condition y(a) = 0.
The solution of the homogeneous equation

y
′ − y = 0

is of the form
y(x) = Cex.

Using the variation of constants method, we write

y(x) = C(x)ex,

which implies
y

′
(x)− y(x) = C

′
(x)ex = f(x).

Hence

C(x) =

x∫
a

f(t)e−tdt+A.
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Because y(a) = 0, one must have C(a) = 0, consequently A = 0.
So

y(x) = ex
x∫
a

f(t)e−tdt,

for any x ∈ [a, b], which implies

g(x) = y
′
(x) = ex

x∫
a

f(t)e−tdt+ exf(x)e−x =

= f(x) +

x∫
a

f(t)ex−tdt.

We got again
g(x) = (I + V )(f)(x).

c) In view of the existence of the bijections I −S : X → X and I + V =
(I − S)−1 : X → X we obtain via transport two new Banach spaces norms
on X.

These norms are given as follows:

|‖f‖| def= ‖(I − S)(f)‖ = sup
x∈[a,b]

∣∣∣∣f(x)−
x∫
a

f(t)dt
∣∣∣∣

and

‖‖f‖‖ def= ‖(I + V )(f)‖ = sup
x∈[a,b]

∣∣∣∣f(x) +

x∫
a

ex−tf(t)dt
∣∣∣∣.

It is seen that, for any x ∈ [a, b] and any f ∈ X, we have:∣∣∣∣f(x)−
x∫
a

f(t)dt
∣∣∣∣ ≤ |f(x)|+

x∫
a

|f(t)| dt ≤ ‖f‖+ (b− a) ‖f‖

and∣∣∣∣f(x) +

x∫
a

ex−tf(t)dt
∣∣∣∣ ≤ |f(x)|+

x∫
a

eb−a |f(t)| dt ≤ ‖f‖+ eb−a(b− a) ‖f‖ ,

hence
|‖f‖| ≤ (1 + (b− a)) ‖f‖

and
‖‖f‖‖ ≤ (1 + eb−a(b− a)) ‖f‖ .
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It follows that the norms ‖‖, |‖‖| and ‖‖‖‖ are equivalent.

Problem. Find (as small as possible) constants A > 0 and B > 0 such
that

|‖f‖| ≤ A ‖f‖

and
‖‖f‖‖ ≤ B ‖f‖ ,

for any f ∈ X.

Remark 3.2. Working for K = C, we know that the spectral radius of S is
equal to 0, hence the spectrum of S reduces to {0} = the residual spectrum
of S and (of course) 1 is in the resolvent set of S.

Example 3.4. We shall consider the space X = Lp(µ) where 1 ≤ p < ∞
and µ is the Lebesgue measure on [0, 1]. The linear and continuous operator
S : Lp(µ)→ Lp(µ) will be given via

S(
∼
f) =

∼
g,

where
g(t) = tf(t)

for all t ∈ [0, 1].
It is seen that (in case K = R) the operator S is positive.
For any natural n, one has

Sn(
∼
f) =

∼
g,

where
g(t) = tnf(t),

for all t ∈ [0, 1].

a) One can prove that

lim
n
Sn(

∼
f) = 0,

for any
∼
f ∈ X.

Indeed, let
∼
f ∈ Lp(µ) = X and take a representative f ∈

∼
f . Then, for

any t ∈ [0, 1), one has
lim
n
tnf(t) = 0,

hence
lim
n
tnf(t) = 0 µ-a.e. and |tnf(t)| ≤ |f(t)| ,
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for all t ∈ [0, 1].
Using Lebesgue’s dominated convergence theorem (see [5]) we get

∼
fn →

n
0

in Lp(µ), where fn(t) = tnf(t) for all t ∈ [0, 1].
Hence

Sn(
∼
f)→

n
0.

b) Using the result from a), we can prove that the following assertions
are equivalent for a measurable function f : [0, 1]→ K:

1◦.
∼
f ∈ C(S).

2◦. There exists u ∈ Lp(µ) such that

f(t) = (1− t)u(t) µ- a.e. .

3◦. One has g ∈ Lp(µ), where

g(t) =
{

1
1−tf(t), if 0 ≤ t < 1
0, if t = 1

.

4◦.
∼
f ∈ AC(S) (for K = R).

The equivalence 1◦ ⇐⇒ 2◦ follows from Theorem 2.3, points 3. and 4.
and from a): we have

C(S) = (I − S)(X)

and the elements
∼
f ∈ (I − S)(X) have representatives given by

f(t) = (1− t)u(t),

with u ∈ Lp(µ).
2◦ ⇒ 3◦ is obvious.
The implication 3◦ ⇒ 1◦ (which will be proved immediately) establishes

the equivalence of assertions 1◦, 2◦, 3◦.
We consider the sequence (fn)n in Lp(µ), given via

fn(t) =
{

(1 + t+ t2 + ....+ tn)f(t), if 0 ≤ t < 1
0, if t = 1

.

It is seen that for any n and t one has

|fn(t)| ≤ |g(t)|

and
fn(t)→

n
g(t) µ- a.e. .
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Again Lebesgue’s dominated convergence theorem implies that

fn →
n
g

in Lp(µ).
But

∼
fn =

∼
f + S(

∼
f) + ...+ Sn(

∼
f)

and we obtain the fact that
∼
fn →

n

∼
g

in Lp(µ), which can be rephrased as follows: the series

∞∑
n=1

Sn(
∼
f)

converges to
∼
g in Lp(µ).

Hence
∼
f ∈ C(S).

In order to finish the proof we must prove that 1◦ ⇒ 4◦.

So, let us take
∼
f ∈ C(S).

Because 1◦ ⇒ 3◦, we obtain (taking a representative f ∈
∼
f) the function

g ∈ Lp(µ) constructed with the aid of f as in the statement of 3◦.
It follows that |g| ∈ Lp(µ), hence the function u : [0, 1]→ K given via

u(t) =
{

1
1−t |f | (t), if 0 ≤ t < 1
0, if t = 1

is in Lp(µ).

From 3◦ ⇒ 1◦ we get
∣∣∣∼f ∣∣∣ ∈ C(S), i.e.

∼
f ∈ AC(S).

c) We consider the subspace H ⊂ X which consists of ”constant func-
tions”. More precisely

H = {
∼
f ∈ X | f is constant}.

We shall prove that H ∩ C(S) = {0} (and this shows that C(S) 6= X).

Indeed, assume by absurd, the existence of 0 6=
∼
f ∈ H ∩ C(S). Let

0 6= α ∈ K be such that f(t) = α µ- a.e. . Using 3◦, from b) we obtain the
function g ∈ Lp(µ) given as follows

g(t) =
{

α
1−t , if 0 ≤ t < 1
0, if t = 1

.
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A simple computation shows that∫
|g|p dµ =∞

and we got a contradiction.

d) Now we consider the subspace

Y = {
∼
f ∈ Lp(µ) | there exists 0 < a < 1 such that f(t) = 0 for all t ∈ [a, 1]}.

(of course, a changes with f).
We shall prove that Y is dense in X.

To this end, we take first an element
∼
u ∈ Lp(µ) such that u(t) ≥ 0 µ-

a.e. . We define the sequence (un)n in Lp(µ) such that

un(t) =

{
u(t), if 0 ≤ t ≤ 1− 1

n

0, if 1− 1
n < t ≤ 1

,

for n ≥ 2.
Then

∼
un ∈ Y and

|un| = un ≤ u,

for all n.
We have also

lim
n
un(t) = u(t) µ-a.e. .

Lebesgue’s dominated convergence theorem says that

∼
un →

n

∼
u

in Lp(µ) = X.

For an arbitrary real f : [0, 1] → R,
∼
f ∈ X, we write f = u − v with

u, v : [0, 1]→ R, u and v being positive functions in Lp(µ).
We consider the sequences (

∼
un)n and (

∼
vn)n in Y such that

∼
un →

n

∼
u and

∼
vn →

n

∼
v in X and

∼
un −

∼
vn →

n

∼
f ,

where
∼
un −

∼
vn ∈ Y .

For complex (in case K = C) f : [0, 1]→ C,
∼
f ∈ X, we write

∼
f =

∼
g + i

∼
h

and find real
∼
gn,

∼
hn in Y such that

∼
gn →

n

∼
g and

∼
hn →

n

∼
h in Y . Then

∼
gn + i

∼
hn ∈ Y and

∼
gn + i

∼
hn →

n

∼
f .
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e) Now we prove that
Y ⊂ C(S).

Let us take
∼
f in Y and prove that

∼
f ∈ C(S). According to b) 3◦, we

must prove that (taking a representative f ∈
∼
f) the function g : [0, 1]→ K,

given via

g(t) =

{
f(t)
1−t , if 0 ≤ t < 1
0, if t = 1

is in Lp(µ).
There exists 0 < a < 1 such that f(t) = 0 for a ≤ t ≤ 1.
It follows that

g(t) =

{
f(t)
1−t , if 0 ≤ t < a

0, if a ≤ t ≤ 1
.

For 0 ≤ t < a, one has

0 <
1

1− t
<

1
1− a

.

Consequently

|g(t)| ≤ 1
1− a

|f(t)| ,

for all t ∈ [0, 1] and g ∈ Lp(µ).

f) We conclude that

C(S) = AC(S) = (I − S)(X).

According to point c, it follows that C(S) 6= X and C(S) is meager.
According to point d) and point e), it follows that C(S) is dense in X.
Theorem 2.3 says that (using point a)) we have the mutually inverse

bijections
(I − S)1 : X → C(S) and TS : C(S)→ X.

Hence 1 is in the continuous spectrum of S and TS is discontinuous.

Notice that TS : C(S)→ X acts as follows: TS(
∼
f) =

∼
g where

g(t) =

{
1

1−tf(t), if 0 ≤ t < 1
0, if t = 1

for any representative f ∈
∼
f ∈ C(S).

Remark 3.3. Actually, the spectrum of S is equal to [0, 1] and coincides
with the continuous spectrum of S.
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