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1. Introduction

‘Weyl-Pedersen calculus’ is the name proposed in [4] for the remarkable cor-
respondence a 7→ Opπ(a) constructed by N.V. Pedersen in [49] as a general-
ization of the pseudo-differential Weyl calculus on Rn. Here π : G → B(H)
is any unitary irreducible representation of a connected, simply connected,
nilpotent Lie group G, the symbol a can be any tempered distribution on
the coadjoint orbit O corresponding to π by the orbit method of [35], and
Opπ(a) is a linear operator in the representation space H, which is in gen-
eral unbounded. When π is the Schrödinger representation of the (2n+ 1)-
dimensional Heisenberg group, the correspondence a 7→ Opπ(a) is precisely
the calculus suggested by H. Weyl in [56] for applications to quantum me-
chanics. This calculus was later developed by L. Hörmander in [27] and
made into a powerful calculus of pseudo-differential operators on Rn; see
[28].

In the present paper we discuss the classical notion of smooth vectors
—and the related notion of smooth operators— with a view toward their

17
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crucial importance for the Weyl-Pedersen calculus. We then approach a
related circle of ideas that recently emerged in [4], namely the modulation
spaces for unitary irreducible representations of nilpotent Lie groups. We
take the opportunity of this discussion to extend some known facts to a set-
ting where they hold true in a natural degree of generality (see for instance
Theorem 3.1 below). We also take a close look at some new examples of
unitary irreducible representations and find out their related notions which
illustrate the main theme of the present paper: the preduals of the corre-
sponding coadjoint orbits, their ambiguity function, or their space of smooth
vectors (see Proposition 5.1 and Corollary 5.1).

Let us mention that the importance of the Weyl-Pedersen calculus and
the related circle of ideas goes far beyond the framework of representation
theory of nilpotent Lie groups. Many other interesting developments within
the theory of partial differential equations and the finite-dimensional Lie the-
ory can be found for instance in the references [1], [2], [30], [44], [43], [31],
[32], [25], [45], [17], [39], [40], and [38]. Moreover, one can use a similar con-
struction even for representations of certain infinite-dimensional Lie groups
in order to provide a geometric explanation for the gauge covariance for the
magnetic Weyl calculus of [41], [33], [34], [42] and the references therein.
The representation theoretic approach to the magnetic Weyl calculus has
been taken up in the papers [3], [6]; see also the survey [5].

The structure of the present paper is summarized in the following table
of contents:
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Notation and background. Throughout the paper we denote by S(V) the
Schwartz space on a finite-dimensional real vector space V. That is, S(V)
is the set of all smooth functions that decay faster than any polynomial
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together with their partial derivatives of arbitrary order. Its topological
dual —the space of tempered distributions on V— is denoted by S ′(V).
We shall also have the occasion to use these notions with V replaced by a
coadjoint orbit of a nilpotent Lie group. In this situation we need the notion
of polynomial structure on a manifold; see Sect. 1 in [48] for details. We
use 〈·, ·〉 to denote any duality pairing between finite-dimensional real vector
spaces whose meaning is clear from the context.

We shall also use the convention that the Lie groups are denoted by upper
case Latin letters and the Lie algebras are denoted by the corresponding
lower case Gothic letters.

As regards the background information for the present paper, we refer
to [28], [18], and [22] for basic notions of pseudo-differential Weyl calculus
on Rn. The necessary notions of representation theory for nilpotent Lie
groups (in particular, the correspondence between the coadjoint orbits and
the unitary irreducible representations) can be found in [50], [11], and [37];
see also [55] and [36]. Our references for topological vector spaces, nuclear
spaces, and related topics are [53], [54], and [9].

2. Smooth vectors for Lie group representations

The smooth vectors have been a basic tool in representation theory of Lie
groups; see for instance the early paper [19] and the classical monographs
[55] and [36]. In this section we discuss some of the very basic properties of
the smooth vectors for the purpose of providing the necessary background
for the later developments in the present paper.

Notation 2.1. Throughout this section we shall use the following notation:

• G is a connected unimodular Lie group with the Lie algebra g;

• dx denotes a fixed Haar measure on G;

• V and Y are some complex Banach spaces;

• π : G→ B(Y) is a representation which is continuous, in the sense that
for every x ∈ Y the mapping π(·)x : G→ Y is continuous.

2.1. Distribution theory on Lie groups

Some references for distribution theory on Lie groups are [7] and [55]. The
present subsection just records a few basic notions and properties needed
later.

Definition 2.1. We define the spaces of test functions on the Lie group
G as follows:
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1. The space
E(G,V) := {φ : G→ V | φ is smooth}

with the usual topology of a Fréchet space (given by the uniform con-
vergence on compact sets of functions and their partial derivatives in
local charts).

2. The space

D(G,V) := {φ ∈ E(G,V) | suppφ is compact}

with the usual topology of an inductive limit of Fréchet spaces.

If V = C then we denote simply E(G,C) = E(G) and D(G,C) = D(G). For
every integer m ≥ 1 we shall also need the function space

Cm0 (G) := {φ : G→ C | φ is of class Cm and suppφ is compact}

with its usual topology of an inductive limit of Banach spaces.
We then define the spaces of vector valued distributions

D′Y(G,V) := {u : D(G,V)→ Y | u is linear and continuous}

and

E ′Y(G,V) := {u : E(G,V)→ Y | u is linear and continuous}

and endow them with the topology of pointwise convergence. We denote the
evaluation mapping by

〈·, ·〉 : D′Y(G,V)×D(G,V)→ Y, 〈u, φ〉 := u(φ),

and similarly for 〈·, ·〉 : E ′Y(G,V)× E(G,V)→ Y.
For V = C we denote simply E ′Y(G,C) = E ′Y(G) and D′Y(G,C) =

D′Y(G). If in addition we have Y = C, then we further denote E ′Y(G) =
E ′(G) and D′Y(G) = D′(G).

Definition 2.2. The support of the distribution u ∈ D′Y(G,V) is denoted
by suppu and is defined as the intersection of all the closed sets F ⊆ G such
that for every φ ∈ D(G,V) with F ∩ suppφ = ∅ we have 〈u, φ〉 = 0.

Remark 2.1. Let L1
loc(G) denote the linear space of (equivalence classes

of) measurable functions on G which are absolutely integrable with respect
to the Haar measure dx on every compact subset of G. Then there exists a
natural linear embedding L1

loc(G) ↪→ D′(G). Specifically, every f ∈ L1
loc(G)

gives rise to a distribution also denoted by f and defined by

(∀φ ∈ D(G)) 〈f, φ〉 =
∫
G

fφdx.
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Note that L1
loc(G) contains many function spaces on G, like the space of

continuous functions, or the space of smooth functions E(G), or the Lebesgue
space Lp(G) if 1 ≤ p ≤ ∞ etc.

Remark 2.2. We have

E ′(G) = {u ∈ D′(G) | suppu is compact}.

For every compact set K ⊆ G we denote E ′K(G) = {u ∈ D′(G) | suppu ⊆
K}.

Remark 2.3. We recall from [53] and [54] that the locally convex spaces
E(G) and D(G) are nuclear. Moreover, we have the linear topological iso-
morphisms

E(G,Y) ' E(G)⊗̂Y and D(G,Y) ' D(G)⊗̂Y,

which are natural in the sense that every pair (φ, y) ∈ E(G) × Y corre-
sponds to the function φ(·)y ∈ E(G,Y). Also recall the linear topological
isomorphisms

E(G)⊗̂E(G) ' E(G×G) and D(G)⊗̂D(G) ' D(G×G)

that take a pair (φ1, φ2) ∈ D(G)×D(G) to the function φ1 ⊗ φ2 defined by
(x1, x2) 7→ φ1(x1)φ2(x2).

Example 2.1. Here are some examples of vector valued distributions that
will be needed in the sequel.

1. For arbitrary g ∈ G the Y-valued Dirac distribution δYg ∈ E ′Y(G,Y) is
defined by

δYg : E(G,Y)→ Y, 〈δYg , φ〉 = φ(g).

If Y = C then we denote simply δYg = δg.

2. By using Remark 2.3, one can define a canonical linear mapping

E ′(G)→ E ′Y(G,Y), u 7→ u⊗ idY ,

which takes every distribution u : E(G)→ C to its tensor product with
the identity operator idY : Y → Y.

Definition 2.3. Let u1, u2 ∈ E ′(G). Then the tensor product of distri-
butions u1 ⊗ u2 ∈ E ′(G×G) can be defined by using Remark 2.3 such that
〈u1 ⊗ u2, φ1 ⊗ φ2〉 = 〈u1, φ1〉 · 〈u2, φ2〉. On the other hand, there exists a
continuous linear co-product

E(G)→ E(G×G), φ 7→ φ∆,
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where φ∆(x1, x2) := φ(x1x2) whenever x1, x2 ∈ G and φ ∈ E(G). The
convolution product of distributions u1 ∗ u2 ∈ E ′(G) is defined by

(∀φ ∈ E(G)) 〈u1 ∗ u2, φ〉 := 〈u1 ⊗ u2, φ
∆〉.

The convolution product makes the distribution space E ′(G) into an associa-
tive algebra whose unit element is the Dirac distribution δ1 ∈ E ′(G).

Example 2.2. Let us consider a few simple properties of the convolution
product.

1. For arbitrary g1, g2 ∈ G we have δg1 ∗ δg2 = δg1g2 .

2. For every u1, u2 ∈ E ′(G) we have

supp (u1 ∗ u2) ⊆ {x1x2 | xj ∈ suppuj for j = 1, 2}.

Definition 2.4. We shall think of g as a real subalgebra of its complex-
ification gC := C ⊗R g, hence gC = g u ig. The universal enveloping
algebra U(gC) is the complex unital associative algebra satisfying the fol-
lowing conditions:

1. The complexification gC is a Lie subalgebra of U(gC).

2. For every complex unital associative algebra A and every linear map-
ping θ : gC → A satisfying θ([X,Y ]) = θ(X)θ(Y ) − θ(Y )θ(X) for all
X,Y ∈ gC there exists a unique extension of θ to a homomorphism of
complex unital associative algebras U(gC)→ A.

One can prove that there always exists an algebra U(gC) satisfying these
conditions and it is uniquely determined up to an isomorphism of complex
unital associative algebras. Moreover, there exists a unique (complex-)linear
mapping U(gC)→ U(gC), u 7→ u⊥ such that

(vw)⊥ = w⊥v⊥, (w⊥)⊥ = w, and X⊥ = −X

for every u, v ∈ U(gC) and X ∈ g (see [15] for more details).

Example 2.3. If g is an abelian Lie algebra of dimension n, then U(gC) is
the algebra of polynomials C[x1, . . . , xn] and for every p ∈ C[x1, . . . , xn] we
have p⊥(x1, . . . , xn) = p(−x1, . . . ,−xn).

We are going to describe in Remark 2.4 some realizations of the univer-
sal enveloping algebra U(gC) which are needed later. To this end we first
introduce the regular representations of G on distribution spaces.
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Definition 2.5. We shall use the translation maps λg : G→ G, x 7→ gx
and ρg : G → G, x 7→ xg defined by an arbitrary element g ∈ G. The cor-
responding regular representations of G on the distribution space D′(G)
are defined by

λ : G→ End (D′(G)), 〈λ(g)u, φ〉 = 〈u, φ ◦ λg〉

and
ρ : G→ End (D′(G)), 〈ρ(g)u, φ〉 = 〈u, φ ◦ ρg−1〉

whenever g ∈ G, u ∈ D′(G), and φ ∈ D(G). For every X ∈ g and φ ∈ E(G)
we also define the functions

λ̇(X)φ : G→ C, (λ̇(X)φ)(z) =
d
dt

∣∣∣
t=0

φ(expG(−tX)z)

and
ρ̇(X)φ : G→ C, (ρ̇(X)φ)(z) =

d
dt

∣∣∣
t=0

φ(z expG(tX)).

Then we can define the derivatives of the regular representations by

λ̇ : g→ End (D′(G)), 〈λ̇(X)u, φ〉 := 〈u, λ̇(−X)φ〉

and
ρ̇ : g→ End (D′(G)), 〈ρ̇(X)u, φ〉 := 〈u, ρ̇(−X)φ〉.

These derivatives are homomorphisms of Lie algebras, hence condition (2) in
Definition 2.4 shows that they can be uniquely extended to unital homomor-
phisms of associative algebras U(gC)→ End (D′(G)). These extensions will
be also denoted by λ̇ : U(gC) → End (D′(G)) and ρ̇ : U(gC) → End (D′(G)),
respectively.

For later use, we also introduce the notation φ⊥(x) := φ(x−1) for every
φ ∈ E(G) and x ∈ G. This gives rise to the idempotent linear mapping

D′(G)→ D′(G), u 7→ u⊥,

where 〈u⊥, φ〉 := 〈u, φ⊥〉 for u ∈ D′(G) and φ ∈ D(G).

Remark 2.4. With Definition 2.5 at hand, we can describe some realiza-
tions of the universal enveloping algebra U(gC) as follows. For the sake
of simplicity, let us denote by E ′1(G) the space of distributions on G with
the support contained in {1}, thought of as a complex unital associative
algebra with respect to the convolution product, cf. Example 2.2. (This set
should actually be denoted by E ′{1}(G) according to Remark 2.2.) Recall
that δ1 ∈ E ′(G) is the Dirac distribution at 1 ∈ G.

Both mappings

U(gC)→ E ′1(G), w 7→ λ̇(w)δ1,
U(gC)→ E ′1(G), w 7→ ρ̇(w)δ1
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are isomorphisms of complex unital associative algebras (see for instance
Th. 1 in Sect. 10.4 of [36].) These isomorphisms are related by the commu-
tative diagram

U(gC)w 7→w
⊥
//

λ̇(·)δ1
��

U(gC)

ρ̇(·)δ1
��

E ′1(G) u7→u
⊥

// E ′1(G)

where the horizontal arrows stand for the mappings introduced in Defini-
tions 2.4 and 2.5, respectively. From now on, we perform the identification
U(gC) ' E ′1(G) by means of the mapping w 7→ ρ̇(w)δ1, by writing simply w
instead of ρ̇(w)δ1 whenever w ∈ U(gC).

Proposition 2.1. For every integer m ≥ 1 and every compact neighbour-
hood K of 1 ∈ G there exist finitely many elements u1, . . . , uN ∈ U(gC)

and the functions φ1, . . . , φN ∈ Cm0 (G) with
N⋃
j=1

suppφj ⊆ K such that

δ1 =
N∑
j=1

φj ∗ uj.

Proof. Use Lemme 2 in [52] or Lemma 2.3 in [14]; see also the proof of
Lemme 1.1 in [8]. 2

2.2. Smooth vectors

Definition 2.6. The smooth vectors for the representation π : G→ B(Y)
are the elements of the linear subspace of Y defined by

Y∞ := {y ∈ Y | π(·)y ∈ E(G,Y)}.

The linear space Y∞ will be endowed with the linear topology which makes
the linear injective map

Y∞ → E(G,Y), y 7→ π(·)y

into a linear topological isomorphism onto its image.
For every distribution u ∈ E ′(G) and every smooth vector y ∈ Y∞ we

then define
π̇(u)y := 〈u⊗̂idY , π(·)y〉 ∈ Y.

Proposition 2.2. The following assertions hold:

1. The space of smooth vectors Y∞ is a Fréchet space and the inclusion
map Y∞ ↪→ Y is continuous.

2. The space Y∞ is dense in Y.
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3. For every u ∈ E ′(G) we have π̇(u)Y∞ ⊆ Y∞.

4. The mapping π̇ : E ′(G)→ End (Y∞) is a homomorphism of unital as-
sociative algebras.

5. For every X ∈ g and y ∈ Y∞ we have π̇(X)y := d
dt

∣∣∣
t=0

π(expG(tX))y.

6. For every y ∈ Y∞ we have a smooth mapping π(·)y : G→ Y∞.

Proof. See for instance [55] and Sect. 10.5 in [36]. 2

Notation 2.2. We shall always denote by Y−∞ the space of continuous
antilinear functionals on the Fréchet space Y∞.

Proposition 2.3. For every integer m ≥ 1 there exist finitely many func-
tions φ1, . . . , φN ∈ Cm0 (G) such that for every y ∈ Y∞ there exist y1, . . . , yN ∈
Y satisfying the equality y = π̇(φ1)y1 + · · ·+ π̇(φN )yN .

Proof. Use Proposition 2.1 to get u1, . . . , uN ∈ U(gC) and φ1, . . . , φN ∈

Cm0 (G) with δ1 =
N∑
j=1

φj ∗ uj . Then Proposition 2.2 shows that

y = π̇(δ1)y =
N∑
j=1

π̇(φj)π̇(uj)y =
N∑
j=1

π̇(φj)yj ,

where we have denoted yj := π̇(uj)y for j = 1, . . . , N . 2

Remark 2.5. As we already mentioned, the smooth vectors for represen-
tations of Lie groups were discussed in detail in [55]. Other important
references in this connection are [19], [20], [36], [8], [12], [16], [51], and [11].

3. Smooth operators for unitary representations

We are going to discuss here the space of smooth operators for a given
representation of a Lie group. The method of investigation was suggested in
[49] and relies on exhibiting this space of operators as the space of smooth
vectors for a suitable representation (see Definition 3.4). The main result
is recorded as Theorem 3.1 and it is particularly significant in the case of
unitary irreducible representations of nilpotent Lie groups (Corollary 3.1).

Notation 3.1. In this section we shall use the following notation:

• G is a connected unimodular Lie group with the Lie algebra g;

• dx denotes a fixed Haar measure on G;
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• H is a complex Hilbert space;

• π : G → B(H) is a continuous unitary representation, and H∞ is the
corresponding space of smooth vectors.

The following notion of smooth operator was singled out on page 349 in
[29] and then further developed in [49].

Definition 3.1. The set B(H)∞ of smooth operators for the representa-
tion π is defined as the set of all operators T ∈ B(H) satisfying the following
conditions:

1. We have T (H) + T ∗(H) ⊆ H∞.

2. For every u ∈ U(gC) the operators π̇(u)T and π̇(u)T ∗ are bounded
on H.

Example 3.1. For every x, y ∈ H∞ the rank-one operator (· | x)y belongs
to the space of smooth operators B(H)∞. We shall see in Corollary 3.3 that
the linear span of these rank-one operators is dense in B(H)∞ provided that
G is a nilpotent Lie group and π is an irreducible representation.

Remark 3.1. It follows at once by Definition 3.1 that B(H)∞ is an asso-
ciative ∗-subalgebra of B(H).

Definition 3.2. We shall say that the representation π has a smooth
character if for every φ ∈ D(G) we have π(φ) ∈ S1(H) and the linear
mapping

D(G)→ S1(H), φ 7→ π̇(φ)

is continuous. In this case we define the corresponding character as

χπ : D(G)→ C, χπ(φ) := Trπ(φ).

Note that χπ ∈ D′(G).

Example 3.2. Every unitary irreducible representation of a nilpotent Lie
group has a smooth character; see for instance Th. 2 in §5 of Ch. II, Part.II
in [50].

Remark 3.2. If the representation π has a smooth character, then there
exists a continuous seminorm p(·) on D(G) such that

(∀φ ∈ D(G)) ‖π̇(φ)‖1 ≤ p(φ).

In view of the definition of the topology on D(G) and of the fact that D(G)
is dense in Cm0 (G) for every m ≥ 1, it then easily follows that for every
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compact subset K ⊆ G there exists an integer m ≥ 1 such that for every
function φ ∈ Cm0 (G) ∩ E ′K(G) we have π̇(φ) ∈ S1(H), and moreover the
mapping

Cm0 (G) ∩ E ′K(G)→ S1(H), φ 7→ π̇(φ)

is linear and continuous.

Definition 3.3. An admissible ideal is a non-trivial two-sided ideal J of
B(H) with the following properties:

1. The ideal J is endowed with a complete norm ‖·‖J such that for every
A,B ∈ B(H) and T ∈ J we have ‖ATB‖J ≤ ‖A‖ · ‖T‖J · ‖B‖ and
‖T ∗‖J = ‖T‖J .

2. The ideal F(H) of finite-rank operators is a dense subspace of J .

3. For every x, y ∈ H we have ‖(· | x)y‖J = ‖x‖ · ‖y‖.

Example 3.3. Every Schatten ideal Sp(H) with 1 ≤ p ≤ ∞ is an admis-
sible ideal. There exist many other examples of admissible ideals; see for
instance [21].

Remark 3.3. Let J be an admissible ideal. By using condition (2) in
Definition 3.3 with A = idH and B = (· | x)x for x ∈ H, and then taking
into account condition (3), it follows that ‖Tx‖ ≤ ‖T‖J · ‖x‖. That is, for
every T ∈ J we have ‖T‖ ≤ ‖T‖J .

On the other hand, it follows at once by condition (3) in Definition 3.3
that for every T ∈ F(H) we have ‖T‖J ≤ ‖T‖1. Since F(H) is dense in
S1(H), we get

(∀T ∈ S1(H)) ‖T‖ ≤ ‖T‖J ≤ ‖T‖1.

In particular, we have S1(H) ⊆ J .

Definition 3.4. For every admissible ideal J we define a linear represen-
tation π⊗2

J : G×G→ B(J ) by

π⊗2
J (g1, g2)T := π(g1)Tπ(g2)−1

for every g1, g2 ∈ G and T ∈ J .

Lemma 3.1. The representation π⊗2
J : G × G → B(J ) is continuous for

every admissible ideal J .
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Proof. If T ∈ F(H), then it is straightforward to check that the mapping
π⊗2
J (·)T : G×G→ J is continuous.

Now let T ∈ J arbitrary. Since J is admissible, there exists a sequence
{Tk}k≥1 in F(H) such that lim

k→∞
‖T − Tk‖J = 0. On the other hand, since

π is a unitary representation, it follows that for k = 1, 2, . . . and every pair
(g1, g2) ∈ G×G we have

‖π⊗2
J (g1, g2)T − π⊗2

J (g1, g2)Tk‖J ≤ ‖T − Tk‖J .

Therefore π⊗2
J (·)T : G×G→ J is the uniform limit on G×G of the sequence

of continuous mappings π⊗2
J (·)T , hence it is in turn continuous. 2

Theorem 3.1. Let π : G → B(H) be a continuous unitary representation,
assume that J ⊆ B(H) is an admissible ideal, and denote by J∞ the space of
smooth vectors for the corresponding representation π⊗2

J . Then the following
assertions hold:

1. We have J∞ ⊆ B(H)∞.

2. If the Fréchet space of smooth vectors H∞ is nuclear, then we have

J∞ = B(H)∞ ⊆ S1(H),

and the Fréchet space J∞ does not depend on the choice of the admis-
sible ideal J .

Proof. (1) To prove the inclusion J∞ ⊆ B(H)∞, let T ∈ J∞ arbitrary,
hence the mapping

G×G→ J , (g1, g2) 7→ π⊗2
J (g1, g2)T = π(g1)Tπ(g2)−1

is smooth. In particular, the mapping π(·)T : G → J is smooth. On
the other hand, it follows by Remark 3.3 that for arbitrary x ∈ H we
have a continuous linear mapping J → H, T 7→ Tx. Hence the mapping
π(·)Tx : G → H will be smooth as a composition of two smooth mappings.
Thus for arbitrary x ∈ H we have Tx ∈ H∞. Moreover, since the operation
of taking the Hilbert space adjoint is (R-linear and) continuous on J by
condition (1) in Definition 3.3, it follows at once that T ∗ ∈ J∞. Hence by
the above reasoning with T replaced by T ∗ we get T ∗x ∈ H∞ for arbitrary
x ∈ H. Thus the operator T satisfies condition (1) in Definition 3.1. To
check condition (2) in the same definition just note that since the map-
ping π(·)T : G → J is smooth, it follows that for every u ∈ U(gC) we have
π̇(u)T ∈ J , hence π̇(u)T ∈ B(H). Since we have seen above that T ∗ ∈ J∞,
it also follows that π̇(u)T ∗ ∈ B(H). This completes the proof of the fact
that T ∈ B(H)∞.
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(2) If H∞ is a nuclear space, then the inclusion map H∞ ↪→ H is a
nuclear operator (see Prop. 7.2 in Ch. III of [53]). Since condition (1) in
Definition 3.1 shows that an arbitrary operator T ∈ B(H)∞ factorizes as
H T−→H∞ ↪→ H, it follows that T ∈ S1(H) (see Cor. 2 to Prop. 7.2 in
Ch. III of [53]). Thus, by taking into account the above Assertion (1), we
get

J∞ ⊆ B(H)∞ ⊆ S1(H). (3.1)

To see that J∞ does not depend on the choice of the admissible ideal J , we
shall prove the equality of Fréchet spaces

J∞ = S1(H)∞, (3.2)

where the right-hand side denotes the space of smooth vectors for the repre-
sentation π⊗2

S1(H) : G×G→ B(S1(H)). First recall from Remark 3.3 that we
have a continuous inclusion map S1(H) ↪→ J , which clearly intertwines the
representations π⊗2

S1(H) and π⊗2
J . It then easily follows by Definition 2.6 that

we have a continuous inclusion map for the corresponding spaces of smooth
vectors S1(H)∞ ↪→ J∞. On the other hand, we have already proved that
J∞ ⊆ S1(H), hence there exists the following commutative diagram

J∞ //

��

S1(H)

{{wwwwwwwww

J

whose arrows stand for inclusion maps between Fréchet or Banach spaces.
The arrows that point to J are continuous inclusions (by Remark 3.3 and
Proposition 2.2(1)), hence the closed graph theorem implies that the inclu-
sion map J∞ ↪→ S1(H) is continuous as well. Since for arbitrary T ∈ J∞
the mapping G × G → J∞, (g1, g2) 7→ π(g1)Tπ(g2)−1 is smooth by Propo-
sition 2.2(6), it then follows that the mapping G×G → S1(H), (g1, g2) 7→
π(g1)Tπ(g2)−1 is also smooth, hence T ∈ S1(H)∞. Thus J∞ = S1(H)∞ as
sets. Since both sides of this equality are Fréchet spaces and we have already
seen that the inclusion map S1(H)∞ ↪→ J∞ is continuous, it follows by the
open mapping theorem that we have the equality of Fréchet spaces in (3.2).

Finally, note that for arbitrary T ∈ B(H)∞ and every u ∈ U(gC) we have
π̇(u)T, π̇(u)T ∗ ∈ B(H)∞ (see Definition 3.1). On the other hand, we have
proved above that B(H)∞ ⊆ S1(H), hence π̇(u)T, π̇(u)T ∗ ∈ S1(H) for all
u ∈ U(gC), and this implies that T ∈ S1(H)∞. Thus B(H)∞ ⊆ S1(H)∞,
and then by using Assertion (1) with J = S1(H) we get B(H)∞ = S1(H)∞.
Now by (3.2) and (3.1) we get J∞ = B(H)∞ ⊆ S1(H), and this completes
the proof. 2
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Corollary 3.1. Assume that G is a nilpotent Lie group and π : G→ B(H)
is a unitary irreducible representation. If J ⊆ B(H) is an admissible ideal,
and we denote by J∞ the space of smooth vectors for the corresponding
representation π⊗2

J , then the following assertions hold:

1. The Fréchet space of smooth vectors H∞ is nuclear.

2. We have J∞ = B(H)∞ ⊆ S1(H), and the Fréchet space J∞ does not
depend on the choice of the admissible ideal J .

3. The space of smooth operators B(H)∞ has the natural structure of a
nuclear Fréchet space.

Proof. Since the representation π is irreducible, there exists a linear topo-
logical isomorphism from the Fréchet space H∞ onto the Schwartz space of
rapidly decreasing functions S(Rd/2), where d is equal to the dimension of
the coadjoint orbit of G corresponding to the representation π. (This fol-
lows by Th. 1 in §5 of Ch. II, Part. II in [50]; see also the Cor. to Th. 3.1 in
[12], or [11].) On the other hand, it is well known that the Schwartz space
S(Rd/2) is nuclear (see for instance Ex. 5 in §8 of Ch. III in [53]). Therefore
the Fréchet space H∞ is nuclear, and then Theorem 3.1 applies.

Finally, by using Assertion (2) when J = S2(H) (the Hilbert-Schmidt
ideal), it follows that B(H)∞ is equal to the space of smooth vectors for
the unitary representation π⊗2

S2(H), hence it is a Fréchet space in a natural

way. On the other hand, the representation π⊗2
S2(H) is irreducible since so

is π (see for instance the proof of Lemma 2.18(a) in [4]). Now the fact that
B(H)∞ is nuclear follows by the above Assertion (1) applied for the unitary
irreducible representation π⊗2

S2(H) : G×G→ B(S2(H)). 2

Corollary 3.2. If G is a nilpotent Lie group and π : G→ B(H) is a unitary
irreducible representation, then the operators in B(H)∞ are precisely the
regularizing operators. That is, A ∈ B(H)∞ if and only if A extends to a
continuous linear map A : H−∞ → H∞, so that the diagram

H−∞ A // H∞� _

��
H A //?�

OO

H

is commutative

Proof. By the closed graph theorem, it suffices to prove that if A ∈ B(H)∞
and f ∈ H−∞, then Af ∈ H∞, in the sense that there exists a smooth vector
denoted Af such that for every φ ∈ H∞ we have (f | A∗φ) = (Af | φ).
This is a consequence of the above Proposition 2.2(3), Corollary 3.1, and
Th. 1.3(b) in [8].
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Conversely, it follows by Definition 3.1 that the restriction to H of every
continuous linear map A : H−∞ → H∞ belongs to B(H)∞. 2

Corollary 3.3. Assume that G is a nilpotent Lie group and π : G→ B(H)
is a unitary irreducible representation. The linear space spanned by the
operators (· | x)y with x, y ∈ H∞ is dense in B(H)∞.

Proof. Let T ∈ B(H)∞ arbitrary. Then Corollary 3.1(2) shows that T is a
smooth vector for the representation π⊗2

S2(H) : G×G→ B(S2(H)). It follows
by Proposition 2.3 that there exist finitely many functions φ1, . . . , φN ∈
Cm0 (G×G) and the operators Y1, . . . , YN ∈ S2(H) such that

T = π⊗2
S2(H)(φ1)Y1 + · · ·+ π⊗2

S2(H)(φN )YN .

Since D(G×G) is dense in Cm0 (G×G) and D(G)⊗D(G) is dense in D(G×G),
it follows by Proposition 2.2(4) that T can be approximated in B(H)∞ by
finite linear combinations of operators of the form

π⊗2
S2(H)(ψ1 ⊗ ψ2)Y = π(ψ1)Y π(ψ⊥2 )

with ψ1, ψ2 ∈ D(G) and Y ∈ S2(H). On the other hand, such an Y can be
approximated in S2(H) by finite linear combinations of operators (· | v2)v1

with v1, v2 ∈ H. The corollary now follows by noticing that

π(ψ1)((· | v2)v1)π(ψ⊥2 ) = (· | π(ψ̄⊥2 )v2)π(ψ1)v1

and recalling that π(ψ)v ∈ H∞ when ψ ∈ D(G) and v ∈ H ([19]). 2

Remark 3.4. Let J ⊆ B(H) be any admissible ideal. If the representation
π has a smooth character, then the corresponding space of smooth vectors
H∞ is nuclear according to Th. 2.6 in [8], hence the above Theorem 3.1(2)
applies.

The inclusion J∞ ⊆ S1(H) can be alternatively proved in this case as
follows. Let T ∈ J∞ arbitrary. Since the representation π has a smooth
character, we have a continuous linear mapping

D(G)→ S1(H), φ 7→ π̇(φ).

On the other hand, note that for every φ1, φ2 ∈ D(G) we have π⊗2
J (φ1 ⊗

φ2)T = π̇(φ1)T π̇(φ⊥2 ). Hence for arbitrary Y ∈ J we get a jointly continuous
trilinear mapping

D(G)×D(G)× J → S1(H), (φ1, φ2, Y ) 7→ π⊗2
J (φ1 ⊗ φ2)Y,

which extends to a jointly continuous bilinear mapping

D(G×G)× J → S1(H), (φ, Y ) 7→ π⊗2
J (φ)Y
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(see also Remark 2.3). By an argument similar to the one of Remark 3.2,
we can further extend the above mapping to a continuous bilinear mapping

(Cm0 (G×G) ∩ E ′K(G×G))× J → S1(H), (φ, Y ) 7→ π⊗2
J (φ)Y (3.3)

for a suitable compact neighborhood K of (1,1) ∈ G × G and a suitably
large integer m ≥ 1. On the other hand, since T ∈ J∞, it follows by
Proposition 2.3 that there exist finitely many functions φ1, . . . , φN ∈ Cm0 (G×
G)∩E ′K(G×G) and the operators Y1, . . . , YN ∈ J such that T = π⊗2

J (φ1)Y1+
· · ·+ π⊗2

J (φN )YN , hence by (3.3) we get T ∈ S1(H).

4. Weyl-Pedersen calculus

In the present section we provide a brief discussion of the remarkable Weyl
correspondence constructed in [49] and we shall also describe some comple-
mentary results which were recently obtained in [4].

4.1. Preduals for coadjoint orbits

This subsection records some properties of the coadjoint orbits of nilpotent
Lie groups which play a crucial role for the construction of the Weyl-Pedersen
calculus.
Setting 1. We shall use the following notation:

1. Let G be a connected, simply connected, nilpotent Lie group with Lie
algebra g. Then the exponential map expG : g→ G is a diffeomorphism
with the inverse denoted by logG : G→ g.

2. We denote by g∗ the linear dual space to g and by 〈·, ·〉 : g∗ × g → R
the natural duality pairing.

3. Let ξ0 ∈ g∗ with the corresponding coadjoint orbit O := Ad∗G(G)ξ0 ⊆
g∗.

4. Let π : G → B(H) be any unitary irreducible representations associ-
ated with the coadjoint orbit O by Kirillov’s theorem (see [35]).

5. The isotropy group at ξ0 is Gξ0
:= {g ∈ G | Ad∗G(g)ξ0 = ξ0} with the

corresponding isotropy Lie algebra gξ0
= {X ∈ g | ξ0 ◦ adgX = 0}. If

we denote the center of g by z := {X ∈ g | [X, g] = {0}}, then it is
clear that z ⊆ gξ0

.

6. Let n := dim g and fix a sequence of ideals in g,

{0} = g0 ⊆ g1 ⊆ · · · ⊆ gn = g

such that dim(gj/gj−1) = 1 and [g, gj ] ⊆ gj−1 for j = 1, . . . , n.



Smooth vectors and Weyl-Pedersen calculus 33

7. Pick any Xj ∈ gj \ gj−1 for j = 1, . . . , n, so that the set {X1, . . . , Xn}
will be a Jordan-Hölder basis in g.

Definition 4.1. Consider the set of jump indices of the coadjoint orbit O
with respect to the aforementioned Jordan-Hölder basis {X1, . . . , Xn} ⊆ g,

e := {j ∈ {1, . . . , n} | gj 6⊆ gj−1 + gξ0
} = {j ∈ {1, . . . , n} | Xj 6∈ gj−1 + gξ0

}

and then define the corresponding predual of the coadjoint orbit O,

ge := span {Xj | j ∈ e} ⊆ g.

We note the direct sum decomposition g = gξ0
u ge.

Remark 4.1. Let {ξ1, . . . , ξn} ⊆ g∗ be the dual basis for {X1, . . . , Xn} ⊆ g.
Then the coadjoint orbit O can be described in terms of the jump indices
mentioned in Definition 4.1. More specifically, if we denote

g∗O := span {ξj | j ∈ e} and g⊥O := span {ξj | j 6∈ e},

then the coadjoint orbitO ⊆ g∗ ' g∗e×g⊥e is the graph of a certain polynomial
mapping g∗e → g⊥e . This leads to the following pieces of information on O:

1. dimO = dim ge = card e =: d;

2. if we let j1 < · · · < jd such that e = {j1, . . . , jd}, then the mapping

O → Rd, ξ 7→ (〈ξ,Xj1〉, . . . , 〈ξ,Xjd〉)

is a global chart which takes the Liouville measure of O to a Lebesgue
measure on Rd.

We define the Fourier transform S(O)→ S(ge) by

(∀X ∈ ge) â(X) =
∫
O

e−i〈ξ,X〉a(ξ)dξ

for every a ∈ S(O), where dξ stands for a Liouville measure on O. This
Fourier transform is invertible. The Lebesgue measure on ge can be normal-
ized such that the Fourier transform extends to a unitary operator

L2(O)→ L2(ge), a 7→ â,

and its inverse is defined by the usual formula. We shall always consider
the predual ge endowed with this normalized measure (see for instance
Lemma 1.6.1 in [48] and Lemma 4.1.1 in [49] for more details and proofs for
the above assertions).

Remark 4.2. Some basic references for the geometry of coadjoint orbits of
nilpotent Lie groups include [50], [46], [47], [48], and [11]; see also [5].
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4.2. Weyl-Pedersen calculus and Moyal identities

We begin this subsection by the general construction of a Weyl correspon-
dence due to [49].

Definition 4.2. The Weyl-Pedersen calculus Opπ(·) for the unitary rep-
resentation π is defined for every a ∈ S(O) by

Opπ(a) =
∫
ge

â(X)π(expGX)dX ∈ B(H).

We call Opπ(a) the pseudo-differential operator with the symbol a ∈
S(O).

Theorem 4.1. The Weyl-Pedersen calculus has the following properties:

1. For every symbol a ∈ S(O) we have Opπ(a) ∈ B(H)∞ and the mapping
S(O)→ B(H)∞, a 7→ Opπ(a) is a linear topological isomorphism.

2. For every T ∈ B(H)∞ we have T = Opπ(a), where a ∈ S(O) satisfies
the condition â(X) = Tr (π(expGX)−1T ) for every X ∈ ge.

3. For every a, b ∈ S(O) we have

(a) Opπ(ā) = Opπ(a)∗;

(b) Tr (Opπ(a)) =
∫
O
a(ξ)dξ;

(c) Tr (Opπ(a)Opπ(b)) =
∫
O
a(ξ)b(ξ)dξ;

(d) Tr (Opπ(a)Opπ(b)∗) =
∫
O
a(ξ)b(ξ)dξ.

Proof. See Th. 4.1.4 and Th. 2.2.7 in [49]. 2

Definition 4.3. Recall from Remark 3.1 that B(H)∞ is an involutive as-
sociative subalgebra of B(H). It then follows by Theorem 4.1(1) that there
exists an uniquely defined bilinear associative Moyal product

S(O)× S(O)→ S(O), (a, b) 7→ a#πb

such that
(∀a, b ∈ S(O)) Opπ(a#πb) = Opπ(a)Opπ(b).

Thus S(O) is made into an involutive associative algebra such that the map-
ping S(O)→ B(H)∞, a 7→ Opπ(a) is an algebra isomorphism.
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Notation 4.1. Recall that H−∞ stands for the space of continuous antilin-
ear functionals on H∞ and the corresponding pairing will always be denoted
by (· | ·) : H−∞×H∞ → C. just as the scalar product in H, since they agree
on H∞ ×H∞ if we think of the natural inclusions H∞ ↪→ H ↪→ H−∞ (see
for instance [8] for more details).

Definition 4.4. If f ∈ H−∞ and φ ∈ H∞, or f, φ ∈ H, then we define the
corresponding ambiguity function

A(f, φ) = Aφf : ge → C, (Aφf)(X) = (f | π(expGX)φ).

For φ ∈ H−∞ and f ∈ H∞ we also define (Aφf)(X) = (φ | π(expG(−X))f)
whenever X ∈ ge.

It follows by Proposition 4.1(1) below that if f, φ ∈ H, then Aφf ∈
L2(ge), so we can use the aforementioned Fourier transform to define the
corresponding cross-Wigner distribution W(f, φ) ∈ L2(O) such that
Ŵ(f, φ) := Aφf .

The second equality in Proposition 4.1(1) below could be referred to
as the Moyal identity since that classical identity (see for instance [22]) is
recovered in the special case when G is a simply connected Heisenberg group.

Proposition 4.1. The following assertions hold:

1. If φ ∈ H, then Aφf ∈ L2(ge). We have

(Aφ1
f1 | Aφ2

f2)L2(ge) = (f1 | f2)H · (φ2 | φ1)H
= (W(f1, φ1) | W(f2, φ2))L2(O)

(4.1)

for arbitrary φ1, φ2, f1, f2 ∈ H.

2. If φ0 ∈ H with ‖φ0‖ = 1, then the linear operator Aφ0
: H → L2(ge),

f 7→ Aφ0
f , is an isometry and we have∫

ge

(Aφ0
f)(X) · π(expGX)φ dX = (φ | φ0)f

for every φ ∈ H∞ and f ∈ H. In particular,∫
ge

(Aφ0
f)(X) · π(expGX)φ0 dX = f

for arbitrary f ∈ H.

Proof. See [4]. 2
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Corollary 4.1. The following assertions hold:

1. For each a ∈ S(O) we have

(Opπ(a)φ | f)H = (â | Aφf)L2(ge) = (a | W(f, φ))L2(O)

whenever φ, f ∈ H. Similar equalities hold if a ∈ S ′(O) and φ, f ∈
H∞.

2. If φ1, φ2 ∈ H∞ and a :=W(φ1, φ2) ∈ S(O), then Opπ(a) is a rank-one
operator, namely Opπ(a) = (· | φ2)φ1.

Proof. See [4]. 2

Assertion (3) in the following corollary in the special case of square-
integrable representations reduces to a theorem of [10] and [13]. One thus
recovers Th. 2.3 in [24] in the case of the Schrödinger representation of the
Heisenberg group.

Corollary 4.2. If φ0 ∈ H∞ with ‖φ0‖ = 1, then the following assertions
hold:

1. For every f ∈ H−∞ we have∫
ge

(Aφ0
f)(X) · π(expGX)φ0 dX = f (4.2)

where the integral is convergent in the weak∗-topology of H−∞.

2. If f ∈ H∞, then the above integral converges in the Fréchet topology
of H∞.

3. If f ∈ H−∞, then we have f ∈ H∞ if and only if Aφ0
f ∈ S(ge).

Proof. See [4]. 2

Remark 4.3. Let B(H)∗∞ be the dual of the Fréchet space B(H)∞ and
denote by 〈·, ·〉 either of the duality pairings

B(H)∗∞ × B(H)∞ → C and S ′(O)× S(O)→ C.

Then for every tempered distribution a ∈ S ′(O) we can use Theorem 4.1(1)
to define Opπ(a) ∈ B(H)∗∞ such that

(∀b ∈ S(O)) 〈Opπ(a),Opπ(b)〉 = 〈a, b〉.

Just as in Definition 4.2 we call Opπ(a) the pseudo-differential operator
with the symbol a ∈ S ′(O). Note that if actually a ∈ S(O), then the present
notation agrees with Definition 4.2 because of Theorem 4.1(3c).
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The continuity properties of the above pseudo-differential operators can
be investigated by using modulation spaces of symbols; see [4] for details.
Specifically, one can introduce modulation spaces M r,s

φ (π) for every unitary
irreducible representation π : G → B(H). We always have H∞ ⊆ M r,s

φ (π)
and M2,2

φ (π) = H. There exists a natural representation π# : G n G →
B(L2(O)) such that for suitable Φ ∈ S(O) \ {0}, the Weyl calculus Opπ(·)
defines a continuous linear mapping from the modulation space M∞,1Φ (π#)
into the space of bounded linear operators on H. One of the main theorems
of [23] is then recovered in the special case when π is the Schrödinger repre-
sentation of the (2n + 1)-dimensional Heisenberg group. Some new results
related to this circle of ideas will be established in Section 5 below.

Remark 4.4. (see [4]) The cross-Wigner distribution W(f1, f2) ∈ S ′(O)
can be defined for arbitrary f1, f2 ∈ H−∞ as follows. By using Corollary 3.2
we can define for f1, f2 ∈ H−∞ the continuous antilinear functional

Tf1,f2 : B(H)∞ → C, Tf1,f2(A) := (f1 | Af2).

That is, Tf1,f2 ∈ B(H)∗∞, and then Th. 4.1.4(5) in [49] shows that there
exists a unique distribution af1,f2 ∈ S ′(O) such that Opπ(af1,f2) = Tf1,f2 .
Now define

W(f1, f2) := af1,f2 .

We can consider the rank-one operator Sf1,f2 := (· | f2)f1 : H∞ → H−∞ and
for arbitrary A ∈ B(H)∞ thought of as a continuous linear map A : H−∞ →
H∞ as above we have

Tr (Sf1,f2A) = (f1 | Af2) = Tf1,f2(A).

Therefore, by using the trace duality pairing, we can identify the functional
Tf1,f2 ∈ B(H)∗∞ with the rank-one operator (· | f2)f1, and then we can write

(∀f1, f2 ∈ H−∞) Opπ(W(f1, f2)) = (· | f2)f1. (4.3)

In particular, it follows that the above extension of the cross-Wigner distri-
bution to a mapping W(·, ·) : H−∞ ×H−∞ → S ′(O) allows us to generalize
the assertion of Corollary 4.1(2) to arbitrary φ1, φ2 ∈ H−∞.

5. Modulation spaces

The modulation spaces play a central role in the time-frequency analysis (see
[22]) and proved to be a very useful tool in the study of continuity properties
of pseudo-differential operators ([23]). These classical ideas can be formu-
lated within the representation theory of the Heisenberg groups, and this
representation theoretic viewpoint turned out to be very effective in order
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to extend the corresponding notions to unitary irreducible representations
of arbitrary nilpotent Lie groups (see [4]). In the first two subsections of the
present section we shall provide some preparations and then describe the
general notion of modulation spaces introduced in [4]. We eventually illus-
trate this notion by discussing a specific class of irreducible representations
on Hilbert spaces of the form L2(O), where O is any coadjoint orbit of a
nilpotent Lie group (see Proposition 5.1 and Remark 5.2).

5.1. Semidirect products

Definition 5.1. Let G1 and G2 be connected Lie groups and assume that
we have a continuous group homomorphism α : G1 → AutG2, g1 7→ αg1.
The corresponding semidirect product of Lie groups G1 nα G2 is the
connected Lie group whose underlying manifold is the Cartesian product
G1 ×G2 and whose group operation is given by

(g1, g2) · (h1, h2) = (g1h1, θh−1
1

(g2)h2) (5.1)

whenever gj , hj ∈ Gj for j = 1, 2.
Let us denote by α̇ : g1 → Der g2 the homomorphism of Lie algebras

defined as the differential of the Lie group homomorphism G1 → Aut g2,
g1 7→ T1(αg1). Then the semidirect product of Lie algebras g1 nα̇ g2 is
the Lie algebra whose underlying linear space is the Cartesian product g1×g2

with the Lie bracket given by

[(X1, X2), (Y1, Y2)] = ([X1, Y1], α̇(X1)Y2 − α̇(Y1)X2 + [X2, Y2]) (5.2)

if Xj , Yj ∈ gj for j = 1, 2. One can prove that g1 nα̇ g2 is the Lie algebra of
the Lie group G1 nα G2 (see for instance Ch. 9 in [26]).

Remark 5.1. Let G1 and G2 be nilpotent Lie groups with a unipotent
automorphism α : G1 → AutG2. That is, for every X1 ∈ g1 there exists an
integer m ≥ 1 such that α̇(X1)m = 0. Then an inspection of (5.2) shows
that g1 nα̇ g2 is a nilpotent Lie algebra, hence G1 nα G2 is a nilpotent Lie
group.

Example 5.1. Let G be a nilpotent Lie group. If we specialize Defini-
tion 5.1 for G1 := G, G2 = (g,+), and α := AdG : G → Aut g, then we
get the semidirect product GnAdG g which is a nilpotent Lie group by Re-
mark 5.1 and is isomorphic to the tangent group TG. The Lie algebra of
GnAdG g is g nadg g0 (where g0 stands for the abelian Lie algebra that has
the same underlying linear space as g) and the corresponding exponential
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map is given by

expGnAdG
g(X,Y ) = (expGX,

1∫
0

AdG(expG(sX))Y ds)

= (expGX,

1∫
0

es·adgXY ds)

for every (X,Y ) ∈ g nadg g0 (see for instance Prop. 2.7(2) in [3]).

5.2. Modulation spaces for unitary representations

In this short subsection we just recall the definition of the modulation spaces
for the unitary irreducible representations of nilpotent Lie groups. We refer
to [4] for a more detailed discussion of this notion.

Definition 5.2. Let φ ∈ H∞\{0} be fixed and assume that we have a direct
sum decomposition ge = g1

e u g2
e.

Then let 1 ≤ r, s ≤ ∞ and for arbitrary f ∈ H−∞ define

‖f‖Mr,s
φ

=
(∫

g2
e

(∫
g1
e

|(Aφf)(X1, X2)|rdX1

)s/r
dX2

)1/s
∈ [0,∞]

with the usual conventions if r or s is infinite. Then we call the space

M r,s
φ (π) := {f ∈ H−∞ | ‖f‖Mr,s

φ
<∞}

a modulation space for the unitary representation π : G → B(H) with
respect to the decomposition ge ' g1

e × g2
e and the window vector φ ∈

H∞ \ {0}.

Example 5.2. For any choice of φ ∈ H∞ \ {0} in Definition 5.2 we have

M2,2
φ (π) = H.

Indeed, this equality holds since ‖Aφf‖L2(ge) = ‖φ‖ · ‖f‖ for every f ∈ H
(see Proposition 4.1 above).

5.3. A specific irreducible representation on L2(O)

We are going to construct here some irreducible representations on the
Hilbert spaces of the form L2(O), where O can be any coadjoint orbit of
a nilpotent Lie group. A different construction involving the Moyal prod-
uct (see Definition 4.3) was used in Def. 2.19 in the paper [4] in order to
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get a representation π# with the same representation space L2(O). The
modulation spaces for π# turned out to be relevant for establishing the
continuity properties of the pseudo-differential operators obtained by the
Weyl-Pedersen calculus for any unitary representation associated with the
coadjoint orbit O (see also Remark 4.3).

Proposition 5.1. Let Z be the center of the connected, simply connected,
nilpotent Lie group G with the corresponding Lie algebra z ⊆ g. Endow the
coadjoint orbit O with a Liouville measure and define

π̃ : GnAd g→ B(L2(O)), (π̃(g, Y )f)(ξ) = ei〈ξ,Y 〉f(Ad∗G(g−1)ξ).

Then the following assertions hold:

1. The group G̃ := GnAd g is nilpotent and its center is Z × z.

2. π̃ is a unitary irreducible representation of G̃.

3. Let us denote by g̃ = g nadg g0 the Lie algebra of G̃ (where g0 stands
for the abelian Lie algebra with the same underlying linear space as g)
and define

X̃j =

{
(0, Xj) for j = 1, . . . , n,

(Xj−n, 0) for j = n+ 1, . . . , 2n.

Then X̃1, . . . , X̃2n is a Jordan-Hölder basis in g̃ and the corresponding
predual for the coadjoint orbit Õ ⊆ g̃∗ associated with the representa-
tion π̃ is

g̃ee = ge × ge ⊆ g̃,

where ẽ is the set of jump indices for Õ.

4. The space of smooth vectors for the representation π̃ is S(O).

Proof. (1) Recall that the multiplication in the semi-direct product group
G̃ is given by

(g1, Y1) · (g2, Y2) = (g1g2, Y1 + AdG(g1)Y2)

while the bracket in the corresponding Lie algebra g̃ = g nad g is defined by

[(X1, Y1), (X2, Y2)] = ([X1, X2], [X1, Y2]− [X2, Y1]). (5.3)

An inspection of these equations quickly leads to the conclusion that g̃ is a
nilpotent Lie algebra with the center z× z.
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(2) If (g1, Y1), (g2, Y2) ∈ G̃ and f ∈ L2(O), then for ξ ∈ O we have

π̃(g1, Y1)(π̃(g2, Y2)f)(ξ) = ei〈ξ,Y1〉(π̃(g2, Y2)f)(Ad∗G(g−1
1 )ξ)

= ei〈ξ,Y1〉ei〈Ad∗G(g−1
1 )ξ,Y2〉f(Ad∗G(g−1

2 )Ad∗G(g−1
1 )ξ)

= ei〈ξ,Y1+AdG(g1)Y2〉f(Ad∗G((g1g2)−1)ξ)

hence π̃(g1, Y1)π̃(g2, Y2) = π̃((g1, Y1)(g2, Y2)). Next note that the represen-
tation π̃ is unitary since the Liouville measure on O is invariant under the
coadjoint action of G.

To see that π̃ is irreducible, let T : L2(O) → L2(O) be any bounded
linear operator satisfying T π̃(g, Y ) = π̃(g, Y )T for arbitrary (g, Y ) ∈ G̃. We
have to check that T is a scalar multiple of the identity operator on L2(O).
By applying the assumption for g = 1 ∈ G, we see that the operator T
belongs to the commutant of the family of multiplication operators by the
functions in the family {ei〈Y,·〉 | Y ∈ g} ⊆ L∞(O). On the other hand, we
recall that the mapping

O → Rd, ξ → (〈ξ,Xj1〉, . . . , 〈ξ,Xjd〉)

is a global chart which takes the Liouville measure of O to a Lebesgue mea-
sure on Rd (see for instance Remark 4.1). Then we can use the Fourier trans-
form to see that the linear subspace generated by {ei〈Y,·〉 | Y ∈ g} is weak∗-
dense in L∞(O) (' L1(O)∗). Therefore the operator T : L2(O) → L2(O)
commutes with all the multiplication operators by functions in L∞(O), and
then it has to be in turn the multiplication operator by some function
φ ∈ L∞(O). Now, by using the assumption that T commutes with π(g, 0)
for arbitrary g ∈ G, it easily follows that φ has to be a constant function
since the coadjoint action of G on the orbit O is transitive.

(3) It is straightforward to check that X̃1, . . . , X̃2n is a Jordan-Hölder
basis in g̃. Next note that S(O) is contained in the space of smooth vectors
for the representation π̃ and for arbitrary f ∈ S(O) and (X,Y ) ∈ g̃ we have

(∀ξ ∈ O) (dπ̃(X,Y )f)(ξ) = i〈ξ, Y 〉f(ξ) +
d
dt

∣∣∣
t=0

f(ξ ◦ etadgX). (5.4)

It then follows by a straightforward application of Prop. 2.4.1 in [46] and by
Lemmas 1.4.1 and 1.5.1 in [48] that the set of jump indices for the coadjoint
orbit Õ is ẽ = {j1, . . . , jd, n+ j1, . . . , n+ jd}, and then g̃ee = ge × ge ⊆ g̃.

(4) It follows by (5.4) and by Lemmas 1.4.1 and 1.5.1 in [48] again that
there exists a polynomial chart on O such that in the corresponding chart,
the associative algebra generated by the image of dπ̃ contains all the linear
partial differential operators with polynomial coefficients. This implies that
the space of smooth vectors for the representation π̃ is equal to S(O), as
asserted. 2
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Corollary 5.1. Assume the setting of Proposition 5.1. The ambiguity func-
tion

Ã : L2(O)× L2(O)→ L2(g̃ee) = L2(ge × ge)

for the representation π̃ : G̃→ B(L2(H)) is given by the formula

(Ãφf)(X,Y ) =
∫
O

e
−i〈ξ,

1R
0

es·adgXY ds〉
f(ξ)φ(ξ ◦ eadgX)dξ

for arbitrary X,Y ∈ ge and f, φ ∈ L2(O).

Proof. For every f, h ∈ L2(O) we have

(Ãφf)(X,Y ) = (f | π̃(exp eG(X,Y ))φ)L2(O). (5.5)

On the other hand, for the element (X,Y ) ∈ g̃ we have

exp eG(X,Y ) = (expGX,

1∫
0

AdG(expG(sX))Y ds) = (expGX,

1∫
0

es·adgXY ds)

(see Example 5.1) hence

(π̃(exp eG(X,Y ))φ)(ξ) = e
i〈ξ,

1R
0

es·adgXY ds〉
φ(Ad∗G(expG(−X))ξ)

= e
i〈ξ,

1R
0

es·adgXY ds〉
φ(ξ ◦ eadgX)

and then the conclusion follows by (5.5). 2

Remark 5.2. Assume the setting of the above Proposition 5.1. It follows by
Corollary 5.1 along with Schur’s criterion for integral operators that there
exists a constant CΦ > 0 such that for every F ∈ L2(O) and Y ∈ ge we
have ‖ÃΦF (·, Y )‖L2(ge) ≤ CΦ‖F‖L2(O), hence ‖F‖

M2,∞
Φ (eπ)

≤ CΦ‖F‖L2(O).

Therefore there exists a continuous inclusion map L2(O) ↪→ M2,∞
Φ (π̃). See

also [6] for similar inclusion maps for the modulation spaces in the setting
of the magnetic Weyl calculus on nilpotent Lie groups.

Example 5.3. Assume that g is two-step nilpotent Lie algebra, that is, we
have [g, [g, g]] = {0}. Let O ⊆ g∗ be any nontrivial coadjoint orbit and pick
ξ0 ∈ O. If we denote by z the center of g, then

O = {ξ ∈ g∗ | ξ|z = ξ0|z},
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since O is a flat orbit. Then by Corollary 5.1 along with the fact that
[g, g] ⊆ z we get

(Ãφf)(X,Y ) =
∫
O

e
−i〈ξ,

1R
0

es·adgXY ds〉
f(ξ)φ(ξ ◦ eadgX)dξ

=
∫
O

e−i〈ξ,Y+ 1
2

[X,Y ]〉f(ξ)φ(ξ + ξ ◦ adgX)dξ

= e−
i
2
〈ξ0,[X,Y ]〉

∫
O

e−i〈ξ,Y 〉f(ξ)φ(ξ + ξ0 ◦ adgX)dξ.

Using the above formula and suitable global coordinates on O, one shows
that the ambiguity function of the representation π̃ agrees with the ambigu-
ity function of the Schrödinger representation of a certain Heisenberg group,
as defined in [22].

Acknowledgments

Partial financial support from the CNCSIS grant PNII - Programme “Idei”
(code 1194) is acknowledged.

References

[1] R.F.V. Anderson, The Weyl functional calculus, J. Funct. Anal., 4 (1969),
240-267.

[2] R.F.V. Anderson, The multiplicative Weyl functional calculus, J. Funct.
Anal., 9 (1972), 423-440.
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44 Ingrid Beltiţǎ and Daniel Beltiţǎ
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