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1. Introduction

Let α ∈ (0, 1) be an irrational number and Tα : L2[0, 1)→ L2[0, 1) act on the
space L2[0, 1) of all classes of measurable, square integrable, complex-valued
functions on the real interval [0, 1) by

(Tαh)(x) = xh({x+ α}), x ∈ [0, 1)

where for any real number y the symbol {y} denotes the fractional part of
y, namely write y = n + s with n ∈ Z, s ∈ [0, 1) and set {y} := s. We can
identify the interval [0, 1) and the unit circle T = {e2πix |x ∈ [0, 1)} endowed
with the normalized Lebesgue measure, so that (Tαh)(e2πix) = xh(e2πi(x+α))
on the space H := L2(T). Then a corresponding Toeplitz operator is also
induced on the Hardy space. The operators Tα were suggested in the 50’s
by E. Bishop as candidates to examples of operators acting on a complex
Hilbert space H without closed linear invariant subspaces 6= {0}, H – the
existence of which is an open problem of operator theory. The main answer
concerning these Bishop’s operators was given in the 70’s by Davie:
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Theorem 1.1. (see [6]) For almost every α, Tα does have closed, linear,
nontrivial hyperinvariant subspaces.

We call a subspace hyperinvariant if it is invariant under all bounded linear
maps commuting with Tα on H – in particular, under Tα. Several extensions
of this result exist, to more general weighted irrational rotations, on different
function spaces, or in several variables, but the question remains open for a
negligible set of highly transcendent numbers α.

The aim of this note is to show that various proofs of such results (mostly
technical, based on an ingenious idea from [6]) can be simplified, made more
conceptual and slightly extended by using certain topics from the work [3]
by Colojoară & Foiaş on generalized spectral operators.

2. Preliminaries

Let us remind that, if α ∈ Q, then Tα easily proves to have (invariant)
eigenspaces, while in the nontrivial case α 6∈ Q, Tα has no eigenvectors (see
[6]). More general operators of the form

Tα,ϕh (x) = ϕ(x)h(e2πi(x+α)),

with ϕ ∈ L∞(T) were then considered by MacDonald [13, 14], Blecher [2],
Flattot [8], Chalendar, Partington & Pozzi [4, 5], on spaces Lp(T) with
p ≥ p0(α,ϕ) sufficiently large, on T as well as on the n-dimensional torus
Tn. Theorem 1.1 was successively extended to wider classes A ⊂ (0, 1) of
numbers α with (0, 1) \ A negligible (but always, with A 6= (0, 1)) and of
multipliers ϕ (including for instance all ϕ real analytic in the neighborhoods
of [0, 1]).

As we will prove, the operator theoretic part involved in the proofs can
be expressed in terms of showing that both Tα and its Hilbert space ad-
joint T ∗α have quasiaffine representations by decomposable operators, see [3,
Theorem II.4.5]. Also, uniform estimates in Birkhoff’s ergodic theorem for
the function f := ln |ϕ| and the action f(e2πx) 7→ f(e2π(x+α)) turn out to
be necessary (which definitely limits the range of data (α,ϕ) that one can
consider by these known techniques). This way we can recover some of the
known proofs, and even obtain slightly new versions, like for instance the
following statement.

Theorem 2.1. Let α ∈ (0, 1) be an arbitrary irrational number. Let ϕ(x) =
ef(x), for 0 < x < 1, where f(x) =

∑n
k=−n cke

2kπix is an arbitrary trigono-
metric polynomial. Then Tα,ϕ has hyperinvariant subspaces.

Under certain hypothesis (that hold a.e.) on the number theoretic prop-
erties of α and using some auxiliary ergodic results from [11, 12], we can
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prove as well versions of Theorem 2.1 for functions f with infinite trigono-
metric series, provided ck → 0 very rapidly as |k| → ∞ (however, such
conditions definitely are not fulfilled by ϕ(x) = x).

We start with the following known definition.

Definition 2.1. (see [10]) The index indα of an irrational number α is the
supremum of all l > 0 such that for any k > 0 there exist p, q with

|α− p

q
| < k

ql
.

As it is well known by Liouville’s theorem, if indα =∞ then α is tran-
scendent. Recall also that by Dirichlet’s theorem, for all irrational α we
have indα ≥ 2. It’s been proved by Roth that if α is algebraic irrational
then indα = 2. Also, Jarnik has shown that almost all numbers α ∈ (0, 1)
have finite index. For these topics we refer to [10].

Theorem 1.1 above holds for all irrational α ∈ (0, 1) with indα < ∞,
and ϕ(x) = x on L2. The result was generalized in [13] to the case of those
multipliers ϕ with ln |ϕ| well-approximable by step functions of intervals;
also, for those ϕ with ln |ϕ| ∈ Lp piecewise monotone and p > indα; in
particular, for ϕ analytic in a neighbourhood of [0, 1] on spaces Lp with 1 <
p <∞. The case ϕ(x) = xs was considered in [8] on L2 for a larger class of
α’s including some non–Liouville numbers. Then a generalization of this was
stated in [4] for products of two such Bishop type operators. Note that such
a product is itself an operator of the same form, Tα1,ϕ1

Tα2,ϕ2
= Tα1+α2,ϕ. In

[14], the existence of invariant subspaces was proved, for a certain class of
α’s, for Bishop operators in several variables. In the multivariable case we
also mention [5], where the cyclic vectors of Tα,ϕ are described and the lack
of eigenvectors is proved for certain ϕ. One can also try, for α arbitrary, to
represent Tα,ϕ = eiD in terms of an infinitesimal generator D = α · 1i

∂
∂x +Mψ

with Mψh = ψh for a function ψ = ψα,ϕ and use the semigroup structure.
However, the existence of such representations was characterised in [15] by a
cohomological obstruction that severely limits the range of ϕ (in particular,
it does not hold for ϕ(x) = x).

3. Idea of the proof

We summarize in what follows, in a unified way, the main steps of the various
proofs known so far to have provided invariant subspaces for Bishop type
operators.

We start with the simplest case ϕ(x) = x.
Following [6], let us note T := eTα, whence the spectral radius r(T ) of

T is 1, as follows from the formula

r(Tϕ,α) = e
R 1
0 ln |ϕ(x)| dx,
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which holds for a wide class of ϕ’s, including the continuous ones on [0, 1)
(see [13]). Generally, we set T := r(Tα)−1Tα and so r(T ) = 1. Using the well
known formula for the spectral radius r(T ) = limn→∞ ‖Tn‖, one can derive,
briefly speaking, good estimates of the uniform operator norms ‖T±n‖ on
suitable hilbertian spaces for large n, which leads to the existence of invari-
ant subspaces by known techniques of Wermer (see [17]) and Atzmon (see
[1]). A first obstacle to this aim is that generally T is not invertible. More-
over, using the technique mentioned above requires to deal with operators T
having a rich functional calculus - almost unitaries, in some sense. For these
(and other) reasons, a renorming of the space under consideration will be
necessary, so that T extends to a more suitable (invertible etc) operator, say
T̃ : H̃ → H̃ on some hilbertian space H̃, that contains H densely. Strictly
speaking, this extension T ⊂ T̃ will be a quasiaffine transformation of T
(see [3, Definition II.4.1]), having the advantage that T̃ is decomposable in
the sense of [3, Definition II.1.1].

The main tool in obtaining the existence of a rich functional calculus for
T̃ is Denjoy-Carleman’s theorem on quasi-analytic functions (see for example
[13, 8, 4]). We remind below some known facts in this sense (see [3]).

Given a sequence of weights ρn ≥ 1 where n ∈ Z such that ρn+m ≤ ρnρm
for all n,m and lim|n|→∞ ρ

1/|n|
n = 1, the space of all continuous functions

f(eit) =
∑

n cne
int on the unit circle such that

‖f‖ :=
∑
n∈Z
|cn|ρn <∞

becomes a Banach algebra A (ρn).
If Beurling’s condition ∑

n∈Z

ln ρn
n2 + 1

<∞

is verified (for example, if ρn := |n||n|ρ , where 0 < ρ < 1 is fixed), the algebra
A (ρn) is regular. In particular, A (ρn) contains functions f, g 6≡ 0 such that
fg ≡ 0.

For an arbitrary complex Banach space X, let B(X) denote the algebra
of all bounded linear maps on X.

Definition 3.1. (see [3]) Let T ∈ B(X) be invertible. Set ρn = ‖Tn‖ and
AT := A(ρn)n. We call T AT -unitary if AT is regular and the functional cal-
culus f 7→ f(T ) of T taking any polynomial

∑
n cnz

n into
∑

n cnT
n extends

to a (unique) continuous morphism of algebras AT 3 f 7→ f(T ) ∈ B(X).

Theorem 3.1. (see [17]) If T is AT -unitary, then it has invariant sub-
spaces.
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Proof. One applies, roughly speaking, the multiplicativity property of the
functional calculus of T , namely write that f(T )g(T ) = (fg)(T ) = 0, while
f(T ) 6= 0 and g(T ) 6= 0. Then set X0 := ker f(T ). We have TX0 ⊂ X0 ,
since f(T )h = 0 implies that f(T )Th = Tf(T )h = 0, too. We omit the
details, that are known (see [17]).

For more general cases concerning α and ϕ, the present technique requires
(see [13, 2, 8, 4]) a sharper, local version of Theorem 3.1 due to Atzmon [1].

4. Main results

We need certain topics on diophantine approximation. Remind that every
irrational number x ∈ (0, 1) has a continuous fraction representation

x =
1

a1 + 1
a2+ 1

a3+···

(a1, a2, a3, . . . ∈ N).

That is, we write 1
x = a1 + t1 with a1 integer and 0 < t1 < 1, namely

a1 = [ 1
x ] and t1 = { 1

x}, then 1
t1

= a2 + t2 with a2 ∈ N and t2 ∈ (0, 1),
namely a2 = [ 1

t1
] etc, where [y] stands as usual for the integer part of y,

that is, y = [y] + {y}. By the formula tn+1 = { 1
tn
} for n ≥ 1, it follows

inductively that all tn = tn(x) (and hence, all partial quotients an = an(x))
are measurable functions of x ∈ (0, 1)\Q. Truncating the continued fraction
of x at the n-th partial quotient an for each n ≥ 1, we obtain the convergents
pn
qn

of x
pn
qn

:=
1

a1 + 1
a2+··· 1

an

(n ≥ 1),

namely p1
q1

= 1
a1

, p2
q2

= 1
a1+ 1

a2

= a2
a1a2+1 etc, where p1 = 1 and q1 = a1,

p2 = a2 and q2 = a1a2 + 1 etc. Then pn = pn(x) ≥ 1 and qn = qn(x) ≥ 1 are
also (integer-valued) measurable functions of x. For these topics we refer for
instance to [7].

Theorem 4.1. (see [7]) For every irrational number x ∈ (0, 1) we have
limn→∞

pn
qn

= x, and for every n ≥ 1 the numbers pn and qn are relatively
prime such that

|x− pn
qn
| < 1

q2n

and
p2n

q2n
< x <

p2n−1

q2n−1
.
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Levy’s Theorem 4.2 below is a nice application of the ergodic theory of
numbers, providing us with a universal constant c such that n

√
qn(x) → c

almost everywhere with respect to x.

Theorem 4.2. (see [7]) For almost all irrational x ∈ (0, 1), we have

lim
n→∞

1
n

ln qn(x) =
π2

12 ln 2
.

Now Theorem 4.2 leads to a slight strengthening of Dirichlet’s theorem
on rational approximation of irrational numbers, as follows below. In the
sequel, let λ denote the Lebesgue measure.

Corollary 4.1. For every ε1, ε2, µ ∈ (0, 1) with ε1 < ε2, there exist a num-
ber m0 ≥ 1 and a measurable subset M ⊂ (0, 1) with λ(M) > µ, such that
for each natural number m ≥ m0 and every point x ∈M there are relatively
prime integers p ≥ 1 and q ≥ 1 with

0 < x− p

q
<

1
q2

and
m1−ε2 ≤ q ≤ m1−ε1 .

Moreover, for m fixed we can select p = p(x) and q = q(x) (x ∈ M) such
that p( · ) and q( · ) are measurable functions.

Proof. Let ε1, ε2, µ ∈ (0, 1) with ε1 < ε2. Set c = π2

12 ln 2 . Fix a positive
ε = ε(ε1, ε2) sufficiently small such that

1− ε1
c+ ε

− 1− ε2
c− ε

>
1
2
ε2 − ε1
c

. (4.1)

By Levy’s theorem above, the sequence of almost everywhere defined mea-
surable functions 1

n ln qn is almost everywhere convergent to the constant
function c. By Egorov’s theorem, there exists a measurable set M ⊂ (0, 1)
with λ(M) > µ such that 1

n ln qn → c uniformly on M as n → ∞. Let
n0 ≥ 1 such that 1

n ln qn(x) ∈ (c − ε, c + ε) for all n ≥ n0 and almost all

x ∈ M . Take m0 = max( e
(c+ε)(n0+1)

1−ε1 , e
4c

ε2−ε1 ). Now let m ≥ m0 be arbi-

trary. Set ν = [ lnm
1−ε1

c+ε ]. Since m ≥ m0 ≥ e
(c+ε)(n0+1)

1−ε1 , lnm1−ε1
c+ε1

− 1 ≥ n0

and so ν − 1 ≥ n0. If ν is even, let n = ν; if ν is odd, let n = ν − 1. In
any case n is even and n ≥ n0. For every irrational x ∈ M , we may let
p
q be the n-th convergent of x, namely define p := pn(x) and q = qn(x).
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By Dirichlet’s theorem on rational approximation from above, p
q < x and

x− p
q <

1
q2

. Using that y − 1 ≤ [y] for y = lnm1−ε1
c+ε , we obtain

lnm1−ε1

c+ ε
− 2 ≤ ν − 1 ≤ n ≤ ν ≤ lnm1−ε1

c+ ε
. (4.2)

Since m ≥ e
4c

ε2−ε1 , we have lnm ≥ 4c
ε2−ε1 . By (4.1), this gives

(
1− ε1
c+ ε

− 1− ε2
c− ε

) lnm ≥ 2

and so
lnm1−ε2

c− ε
≤ lnm1−ε1

c+ ε
− 2. (4.3)

From (4.2) and (4.3) we derive

lnm1−ε2

c− ε
≤ n ≤ lnm1−ε1

c+ ε
.

Hence
m1−ε2 ≤ en(c−ε) ; en(c+ε) ≤ m1−ε1 .

Since n ≥ n0, we have c− ε ≤ 1
n ln qn(x) ≤ c+ ε for almost all x ∈M , that

is, en(c−ε) ≤ q ≤ en(c+ε) almost everywhere. Then m1−ε2 ≤ q ≤ m1−ε1 .

If we aim to extend the results from the L2 case to Lp spaces with
1 < p <∞, the following lemma (the idea of which is taken from [6]) is also
needed.

Lemma 4.1. Fix a real p > 1, a positive ω < 1 − 1
p and a sequence of

numbers tk > 0 (k ≥ 1) with limk→∞ tk = 0. Then for any f ∈ Lp[0, 1]
nonnegative almost everywhere and any α, the sequence of sets

Ek = {x ∈ [0, 1) | f({x− nα}) ≤ n1−ω

tk
for all n ≥ 1} (k ≥ 1)

is increasing and satisfies λ(∪kEk) = 1.

Proof. For every k ≥ 1, one has the equality [0, 1) \Ek = ∪n≥1Mkn, where
Mkn = {x ∈ [0, 1) | f({x − nα}) > n1−ω

tk
}. Define the function σ : R →

[0, 1) by σ(y) = {y}. A brief look at its graph shows that the restriction
σ|I : I → [0, 1) is measure-preserving on any interval I ⊂ R of length one,
that is, for every measurable subset m of the codomain [0, 1), the sets m
and its preaimage σ−1(m) := {y ∈ I |σ(y) ∈ m} have the same measure,
λ(σ−1(m)) = λ(m). This property is inherited by every of the functions
σn : R→ [0, 1) defined by σn(y) = {y−nα}, since they are translations of σ,
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σn(y) = σ(y−nα). Then the map τn : [0, 1)→ [0, 1) defined by τn := σn|[0,1)

is measure-preserving. Consider the set Nkn = {s ∈ [0, 1) | f(s) > n1−ω

tk
}.

Note that Mkn is the preimage τ−1
n (Nkn) := {x ∈ [0, 1) | τn(x) ∈ Nkn} of

Nkn by τn, briefly: Mkn = τ−1
n (Nkn). Then

λ(Mkn) = λ(τ−1
n (Nkn)) = λ(Nkn),

since τn is measure-preserving. It follows that for every k,

λ([0, 1) \ Ek) = λ(∪nMkn) ≤
∑
n

λ(Mkn) =
∑
n

λ(Nkn).

Now

(
n1−ω

tk
)pλ(Nkn) ≤

∫
Nkn

fp dλ ≤ ‖f‖pp.

Hence

λ([0, 1) \ Ek) ≤
∑
n

‖f‖pp(
tk

n1−ω )p = ‖f‖pp
∑
n

1
n(1−ω)p

tpk = c · tpk

for a constant c = cf,p,ω < +∞, since (1−ω)p > 1. Hence λ([0, 1)\Ek)→ 0
as k →∞.

A proof of Theorem 1.1. We give the promised version of the proof of
Theorem 1.1 and add the necessary hints for the case of more general data ϕ
and α (including for example those in Theorem 2.1). Generally, the results
hold as usual for almost all α (generally, not all of them) and for suitable
classes of weights ϕ. Part (a) of the proof compiles usual arguments from
[6, 2, 13, 14, 8, 4], while part (b) applies results from [3, 9].

(a) Firstly, following [6], one extends Tα,x to the space L of all (classes
of) Lebesgue measurable functions defined almost everywhere on [0, 1), so
that T−n also exists for n = 1, 2, . . ., given by the formula

T−nf(x) = Fn(x)f({x− αn}),

where

Fn(x) =
e−n

{x− α} · · · {x− nα}
(we omit the details, that are routine). The computation in the case of an
arbitrary ϕ ∈ L∞(T) is straightforward, we just write ϕ({x − jα}) instead
of {x− jα}, respectively.

We represent now the interval [0, 1) as an increasing countable union
[0, 1) = ∪kEtk as in Lemma 4.1, that we apply for f := | ln |ϕ|| and a
suitable sequence (tk)k≥1 to obtain upper bounds of |Fn| on Etk since the
sets Etk have the form Etk = {x | {x− nα} bounded from below }.
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Then we make use of Dirichlet’s theorem in the form of Corollary 4.1,
showing that for every natural integer n there exist two numbers p, q, rela-
tively prime, such that |α− p

q | <
1
q2

, q ≤
√
n. Moreover, for almost all α we

can suppose that q ≥ n1/4. To this aim, note that we can exhaust almost
all irrationals in (0, 1) by a countable net of measurable subsets M = Mm

as in the statement. Then simply suppose, by hypothesis, that α ∈ ∪mMm.
Then for our α in some fixed M , choose ε1 and ε2 suitably in order to get
the desired estimates for the denominators q (of orders

√
n and 4

√
n, in the

present case).
It follows that we have good approximations of the form {x − jα} ≈

{x − j pq} for j = 1, n, and hence, we can derive suitable estimates for
the multipliers Fn(x) on each of the sets Et with t = tk for k = 1, 2, . . ..
Namely, we can get estimates for the essential supremum on Etk , of the form
‖Fn‖∞,Etk ≤ nn

ρ
, for some fixed positive ρ < 1 depending on ε1 and ε2. In

the case ϕ(x) = x this holds in an elementary way (see [6]): use the remark-
able fact about the Dirichlet approximation |α − p

q | <
1
q2

that when j runs
any partial set consisting of q consecutive integers, like {i+1, i+2, . . . , i+q},
the factors {x − j pq} in the denominator of (the approximation of) Fq will
run precisely the set {x− 0

q}, {x−
1
q}, {x−

2
q}, . . . , {x−

q−1
q }, in some order

that makes no matter, and so a factorial-type denominator appear, to be
computed by Stirling’s formula (or Γ functions). Then for an arbitrary, large
n, we divide it by q and use n = q ·m+r with r < q to estimate, accordingly,
‖Fn‖ in terms of ‖Fq‖, ‖Fm‖ and ‖Fr‖. The estimate from below q ≥ 4

√
n

is to be used in conjunction with m = n−r
q ≤

n
q in order to find an estimate

for m, and hence, for ‖Fm‖.
For more general ϕ’s such computations become complicated and a bet-

ter way to unravel things is the ergodic theorem. Indeed, another idea
behind most proofs seems to be the following (see [13]): once the multi-
plier Fn that appears in the formula T−nf(x) = Fn(x)f({x − αn}) has a
rather concrete form (in the case ϕ(x) = x for instance), then estimating
|Fn(x)|, from above and from below, is equivalent to finding estimates for
the modulus of

1
n

ln |Fn(x)| =
∫ 1

0
F (y) dy − F (τ(x)) + F (τ2(x)) + · · ·+ F (τn(x))

n
,

where F (x) := ln |ϕ(x)| (= lnx) and τ(z) := ze2πiα acts on the unit circle
by a rotation of angle 2πα (Weyl automorphism); to this aim, let us also
remind the formula r(Tϕ,α) = e

R 1
0 ln |ϕ(y)|dy. An easy case for example is

when | 1n [F (x) + F (τ(x)) + · · ·+ F (τn−1(x))]−
∫ 1
0 F (y) dy | ≤ an, where an

is of order 1
nε as n→∞ for some ε > 0, which holds for very good weights

ϕ (this is not the case for ϕ(x) = x, by the way). Such a convergence speed
holds, for instance, for data like those in Theorem 2.1. Actually, it is enough
to suppose there that the Fourier coefficients ck of f = lnϕ are sufficiently
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rapidly convergent to 0 as |k| → ∞. Then we compute the trigonometric
moments of the spectral measure 〈EU ( · )f, f〉 of the unitary Uh = h ◦ τ of
composition with τ , localised on f , and apply the results in [11].

There are few concrete results on the speed of convergence (an)n, for
example let F := ln |ϕ| and write F (e2πix) =

∑
k cke

2πi·kx; if F ∈ L1 with
|ck| ≤ ct

kindα+1+ε , we may take an = O(1/n) (see [12]); if |ck| ≤ ct
k2+ε , we

may take an = O(1/ nε) using results in [11]; if α is well approximable by
rationals, then τ is well approximable by periodic automorphisms, which
also leads to an ergodic behaviour (see [16]).

However, as it is known, there cannot be a universal estimate of the speed
of convergence in the ergodic theorem, even for a continuous function F .
That is, by following only this technique there is no hope to prove existence
of invariant subspaces for all α ∈ (0, 1) and all ϕ ∈ L∞(T). Moreover, there
exist examples (see [14]) of Bishop-type operators with a bad behaviour of
the sequence of norms ‖Tn‖, so that the known techniques presented here
can not lead to significant improvements with respect to [6, 13]. New ideas
are then necessary in order to deal with the general case, more precisely
with highly transcendent parameters α.

Returning to the manageable case when α is supposed to be within a
suitable class A ⊂ (0, 1) and ϕ behaves well, we obtain estimates of the form

‖T±n‖L2(Et) ≤ n
nρ .

The right hand side from above may be slightly larger, allowing to cover
a wider class of α’s (see [8, 4]) as long as Wermer / Atzmon -type conditions
are fulfilled.

(b) In order to apply now the results we have mentioned from [3], we
can take, for example, H̃ := {f | ‖f‖H̃ < ∞}, where for suitable positive
constants ck and tk (k ≥ 1) with tk → 0 as k → +∞, the norm ‖ · ‖H̃ is
defined by

‖f‖H̃ :=
∑
k≥1

ck

∫
Etk

∑
n∈Z
|Tnf (x)e−|n|

ρ |2dx

(integrals like those in the right hand side from above constantly appear in
the proofs of such results, starting with the first one in [6]).

Using the estimates from above, of the form ‖T±n‖L2(Et) ≤ nn
ρ
, we

obtain
‖f‖H̃ ≤ ct. ‖f‖L2 .

Let T̃ denote the operator T acting on H̃. Then T̃ is AT̃ -unitary with spec-
trum σ(T̃ ) = the unit circle. A suggestion to this aim is to start computing
‖T̃ f‖H̃ for an arbitrary f ∈ H̃. Replace f by Tf in the formula defining
‖ · ‖H̃ , which after a shift n+1 7→ n of the summation index n ∈ Z will alter
the coefficient near Tnf (x) by a factor e|n+1|ρ−|n|ρ . Since ρ < 1, this fac-
tor is sufficiently negligible when checking Beurling’s condition (in a simple
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case: if ρ := 1/2 and n ≥ 1, this factor is e
√
n+1−

√
n = e(

√
n+1+

√
n)−1 → 1 as

n→∞). Roughly speaking, this shows that T̃ is ‘almost unitary’. Strictly
speaking, it follows that T̃ is AT̃ -unitary, and so it is decomposable on H̃
(see [3]).

Let now A : H (= L2) → H̃ denote the inclusion L2 ⊂ H̃. Then A is
bounded with dense range. Also, AT = T̃A, that is, T = A−1T̃A.

Definition 4.1. (see [3]) Whenever an injective, bounded map A : H → H̃
exists with dense range into another Hilbert space H̃ such that T = A−1T̃A,
we call T a quasiaffine transformation of T̃ and write T < T̃ .

The previous definition and the related results we are using hold as well
in the context of the complex Banach spaces (see [3]). This makes it possible
for us to deal as well with the case of the Lp spaces instead of H = L2.

We have shown, so far, that

T < T1

with T1 decomposable and T1 has the spectrum = T on some Banach space;
namely, T1 = T̃ on H̃.

The following properties of the quasiaffinity are straightforward (the
symbol ∗ stands below, as usual, for the Banach space adjoint).

Proposition 4.1. (see [3]) If B < C, then C∗ < B∗. If B is AB-unitary,
then B∗ is AB∗-unitary.

Now one easily checks that the Hilbert space adjoint T ∗α,ϕ = T−α,ψ of
Tα,ϕ on H is also a Bishop-type operator, for a suitable ψ = ψϕ,α. Then we
similarly obtain, by repeating from the scratch all reasoning above for T−α,ψ,
that T ∗ < T̃ , where T̃ is another AeT -unitary operator with large spectrum
( 6= a single point) on some other Banach space. Hence by Proposition 4.1,
we have T̃ ∗ < T ∗∗ with T̃ ∗ = AeT ∗-unitary. Set T2 = T̃ ∗. Since H is a
reflexive Banach space, T ∗∗ = T . Thus

T2 < T < T1

where Ti is ATi-unitary, for i = 1, 2.
The existence of a hyperinvariant subspace of T follows then from the

theorem stated below.

Theorem 4.3. (see [3], see also [9]) If T2 < T < T1 with Ti = ATi-unitary
for i = 1, 2 and σ(T2) 6= a single point, then T has hyperinvariant subspaces.
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