On the path partition dimension of a graph

Verman Ruxandra

Faculty of Mathematics and Computer Science,
University of Bucharest,
Str. Academiei, 14,
010014 Bucharest, Romania
E-mail: verman@fmi.unibuc.ro

Abstract

For a graph G and any two vertices u and v in G, let d(u,v) denote the distance between u and v and let d(G) be the diameter of G. For a V(G), the distance between $d(v, S) = min\{d(v, x) | x \in S\}$. Let $\Pi = \{S_1, S_2, ..., S_k\}$ be an ordered kpartition of V(G). The representation of v with respect to Π is the k-vector $r(v|\Pi) = (d(v,S_1),d(v,S_2),...d(v,S_k))$. Π is a resolving partition for G if the k-vectors $r(v \mid \Pi)$, $v \in V(G)$ are distinct. The minimum k for which there is a resolving k-partition of V(G) is the partition dimension of G, and is denoted by pd(G). $\Pi = \{S_1, S_2, ..., S_k\}$ is a path resolving k-partition for G if is a resolving partition and each subgraph $\langle S_i \rangle$ induced by S_i , $1 \le i \le k$, is a path. The minimum k for which there exists a path resolving kpartition of V(G) is the path partition dimension of G, denoted by ppd(G). In this paper the path partition dimensions of some classes of well-known graphs are determined and connected graphs of order $n \ge 3$ having path partition dimension 2, n or n-1 are characterized.

Keywords: distance, metric dimension, partition dimension, path partition dimension, resolving partition, path resolving partition, eccentricity.