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Abstract 
In this paper the stochastic Inclusion Principle is applied to 
decentralized LQG suboptimal longitudinal control design of a platoon 
of automotive vehicles. Starting from a stochastic linearized platoon 
state model, input/state overlapping subsystems are defined and 
extracted after an adequate expansion. An algorithm for approximate 
LQG optimization of these subsystems is developed in accordance with 
their hierarchical LBT (lower-block-triangular) structure. Vehicle 
controllers obtained after contraction, which leaves local Kalman filters 
uncontracted, provide high performance tracking and noise immunity. 
 
Keywords: Platoon of vehicles, Overlapping decompositions, LQG 
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1. INTRODUCTION 

The problem of design of automated highway systems (AHS) has attracted a 
considerable attention among researchers, e.g. [2, 8]. AHS control architecture proposed 
in [8, 2, 18] is based on the introduction of a notion of platoons, groups of vehicles 
following the leading vehicles with small intra-platoon separation. Control of platoons 
has been studied from different viewpoints [9,7,16]. Main theoretical contributions are 
related to the stability problem [7, 16]. It has been shown that an efficient decentralized 
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control law can be formulated when each vehicle is applied with data representing its 
acceleration, velocity, distance to the preceding vehicle, velocity and acceleration of the 
preceding vehicle, as well as velocity and acceleration references. [9]. However, tuning of 
the local  regulator parameters has been based on arguments related to relative stability, 
without taking into account optimality in any predefined sense, structural  and signal 
uncertainties and possibilities to improve the performance by introducing dynamics into 
the regulator. In [13, 14] a systematic procedure for the design of decentralized 
overlapping platoon controller on the basis of  LQ optimization has been described.  

In this paper a generalization of the approach in [13, 14] to the stochastic case is 
presented. Namely, the Stochastic Inclusion Principle [11, 12] is applied to the design of 
decentralized LQG suboptimal longitudinal control of a platoon of vehicles, taking into 
account uncertainty resulting from the influence of the environment and measuring 
devices. The first part of the paper contains the results related to platoon modeling, 
formulated in accordance with [8, 18,2,9,14], taking into account stochastic disturbances 
and measurement noise. A linearized stochastic state model for a string of moving 
vehicles is derived on the basis of [3, 9, 13]. Each vehicle is described by a state model, 
with accelerations, velocities and distances to preceding vehicles as state variables. In the 
second part, an outline of the theory of the Stochastic Inclusion Principle is presented. It 
is shown that a suitable expansion of the obtained platoon model which possesses the 
overlapping structure enables formal extraction of �subsystems� for which local quadratic 
performance indices can be formulated. Having in mind both the subsystem model 
structure and the available data set [9], an optimization technique resembling to the 
methodology for deriving LQ suboptimal control for systems with the hierarchical LBT 
structure proposed in [6, 10, 14], is developed and presented in the third part of the paper. 
Each subsystem controller contains a specific Kalman type estimator, together with the 
corresponding state feedback gain. Contraction to the original space provides a 
decentralized controller for the whole platoon, leaving all local state estimators 
uncontacted. Experimental results are given in order to illustrate main properties of the 
proposed methodology. 
 
2. MODEL FORMULATION 

It will be adopted in this paper that i-th automotive vehicle in a close formation 
platoon consisting of n vehicles can be represented by the following dynamic model: 
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where iii xxd  1  is the distance between two consecutive vehicles, 1ix  and ix  

represent their positions, iv , ia  and y  are the velocity, acceleration and jerk, 

respectively, (.)i
af  and (.)i

jf  are static nonlinearities of saturation type, i   represents the 

inverse time-constant of the basic vehicle dynamics, ik1  and ik2  constants defining rolling 
resistance, iu  is the corresponding control input, while ie  represents the white random 

noise force input with variance e
ir , resulting from wind gusts and road roughness. A 

slightly modified version of (1) is taken in [9, 13] as the basic model of individual 



vehicles in a platoon. There are several possibilities for constructing linearized models in 
the state-space form depending on the choice of state variables, e.g. [3, 9, 8, 13, 14]. A 
convenient form follows directly from (1). Supposing for the sake of simplicity that n=3 
and that all the vehicles have the same models, we obtain 
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where  iii
T
i avdX    ( 00 x  in 1d ) and   
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Control design for (2) can, obviously, be based on various methodologies. 
However, any attempt to formulate a globally optimal control law for the entire platoon is 
faced with the problem that control of each vehicle depends, in general, on the states of 
all the remaining vehicles. Permissible control strategies should essentially be 
decentralized, having in mind the supposed information structure [9], i.e. the local control  

iu  is to be calculated on basis of the noise measurements of the local vehicle state 

variables  iii avd , together with the noisy information about the velocity and 

acceleration of the preceding vehicle  11  ii av , which is assumed to be transmitted by 

appropriate communication channels. Each vehicle is also supplied with the information 
about the spacing, velocity and acceleration reference command rrr avd . The 
theory of large scale systems abounds with methodologies for both decentralized design 
of complex control structures and decentralized design of completely decentralized 
control structures, e.g. [17, 13, 14]. One of elegant and powerful methodologies is based 
on the Stochastic Inclusion Principle [11,12]. 
 
3. STOCHASTIC INCLUSION PRINCIPLE 
 
3.1 GENERAL ASPECTS 

Consider a pair )
~

,( SS of linear stochastic continuous-time dynamic systems 
represented by 
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where 00 )( xtx   and  00
~)(~ xtx  . The first equations in (3) are Ito stochastic differential 

equations describing the evolution of state vectors nRtx )( and nRtx
~

)(~  of S  and S
~

, 

respectively, driven by control inputs mRtu )(  and mRtu
~

)(~   ( it is straightforward to 
connect model (2) with model (3)). Stochastic disturbances are modeled by Wiener 



processes rRt )(   and rRt )(
~  with incremental covariances dtR  and dtR~ , 

respectively. The second equations are the observation equations, where qRt  )(  and 
qRt
~

)(~   are Wiener processes with incremental covariances  dtR  and dtR~ , 

respectively. Vectors 0x  end 0
~x  are assumed to be Gaussian with means  0m  and 0

~m , 

and covariances 0R  and 0
~
R , respectively. It is assumed that )(t , )(t  and 0x , as well as 

)(
~

t , )(~ t  and 0
~x  are mutually independent. Matrices 

~
,

~
,

~
,,,, BACBA  and C

~
 are assumed 

to be constant. The basic assumption is that ppnn ~,~  and qq ~ . 

In general, for a stochastic process )(t we shall denote the mean by )(tm  and 
covariance by ),( 21 ttR . If )()( tTt    )( 0tt  , where )(t  and )(t are n  and n  

dimensional stochastic processes, respectively, and T  a full rank matrix, we shall say that 
)(t  is a strong (strict) expansion of )(t , i.e. ]);([)( TtEt s  , if  nn  , and that )(t is 

a strong (strict) contraction of )(t , i.e. ]);([)( TtCt s   , if  nn  . If, for the same 

processes, )()( tTmtm    and TTttTRttR ),(),( 2121    ),,( 021 tttt  , we shall say that )(t  is 

a weak expansion of )(t ,  i.e. ]);([)( TtEt    if  nn  , and a weak contraction,  i.e. 

]);([)( TtCt   , if  nn  . 

Definition 2.1 The system S
~ includes the system S  if there exist a quadruplet of full rank 

matrices  },,,{ ~~~~ qqppnnnn SRVU   satisfying nIUV  , such that for any 0x  and )(tu  in S  the 

conditions ];[~
00 VxEx   and ]);([)(~ RtuEtu s  imply ]);(~[)( UtxCtx   and ]);(~[)( StzCtz   

)( 0tt  . 

The expansion S
~  contains all necessary information about S  expressed in terms 

of second-order statistics, having in mind the Gauss-Markov properties of )(),(~),( tztxtx   

and )(~ tz . Weak contractions/expansions are related to the states and outputs, and strong 
contractions/expansions to control inputs. 

Restriction and aggregation represent two important special cases of inclusion. 
Definition 2.2 The system S  is restriction (type c, according to [11]) of the system S

~  if 
there exist a full rank matrix nnV ~ such that for any 0x  the conditions ];[~

00 VxEx   and 

]);(~[)( QtuCtu s  imply ]);([~ VtxEx   and ]);([)(
~

TtzEtz    )( 0tt  . 

Theorem  2.1 The system S  is restriction (type c) of S
~  if there exist full rank matrices 

QV ,  and T  such that  
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Definition 2. 3 The system S  is an aggregation (type c) of S
~  if there exist a triplet of full 

rank matrices ),,( SRU  such that for any 0
~x  and )(tu  the conditions ];~[ 00 UxCx   and 

]);([)(~ RtuEtu s  imply ]);(~[)( UtxCtx   and ]);(~[)( StzCtz   )( 0tt  . 

Theorem 2.2 The system S  is an aggregation (type c) of S
~  if there exist full rank 

matrices RU ,  and S  such that 
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3.2 INCLUSION OF ESTIMATORS 

Consider time-invariant estimators E  and E
~  for S  and S

~ , respectively, 

zdLdtuGdtFd
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where sRt )(  and sRt
~

)(~   are the estimator outputs satisfying ss ~ . State models for 

),( ESSe   and )
~

,
~

(
~

ESSe  are, respectively, 
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where   TTTxX ][  , TTTxX ]~~[
~

 , TTT ][  ,  
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~

,
~  and e

~  are defined analogous. It will be assumed that )( 00 tXX   and 

)(
~

00 tXX


  are Gaussian with means 0M  and 0
~

M  and covariances XR0  and XR
~

0 , 
respectively. 
Definition 2.4 The pair  )

~
,

~
( ES  includes the par ),( ES  if S

~  includes S , and there exists a 
pair of full rank matrices ),( ~~ ssss ED   satisfying sIDE   such that for given 0X  and )(tu  

the conditions ];[
~ *

00 VXEX   and ]);([)(~ RtuEtu s  imply ]);(
~

[)( *UtXCtX   )( 0tt  , 

where  DUdiagU ,*   and   EVdiagV ,*  . 
Theorem 2.3 The pair ),( ES  is a restriction (type c) of the pair )

~
,

~
ES(  if the conditions of 

Theorem 2.1 are satisfied, together with EFEF 
~

, where E  is full rank  matrix, and 
ELTLEGQG 

~
,

~
. 

Theorem 2.4 The pair ),( ES  is a aggregation (type c) of the pair )
~

,
~

( ES  if the conditions of 
Theorem 2.2 are satisfied, together with FDFD 

~ . Where D  is full rank matrix, 
and LSLDGRGD 

~
,

~
. 

 
3.3 CONTRACTIBILITY OF DYNAMIC CONTROLLERS 

Let ),,( FESS f  and )
~

,
~

,
~

(
~

FESS f  where F  and F
~

 are feedback mappings added 
to the pairs ),( ES  and )

~
,

~
( ES  

vKuvKu ~~~~:
~

;:   FF                                                                             (8) 

where K and K
~

 are constant matrices, and v  and v~  reference signals. Obviously, we 
have   
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where 

;
0

0
,, ***






























LG

B
B

GKFLC

BKA
A  

matrices ** ~
,

~
BA  and *~

  are defined analogously. 
Definition 2.5 We say that the dynamic controller )

~
,

~
( FE  for S

~  is contractible to the 

dynamic controller  ),( FE  for S  if fS
~  includes fS  in the sense of Definition 2.1. 

Theorem 2.5 The controller )
~~

( F,E  is contractible to the controller ),F(E  when ),( ES  is 
restriction (type c) of )

~
,

~
( ES  and the condition EKQK

~
 is satisfied. 

Theorem 2.6 The controller )
~

,
~

( FE  is contractible to the controller ),( FE  when ),( ES  is an 
aggregation (type c) of )

~
,

~
( ES  and the condition RKDK 

~  is satisfied. 
The above results show that K  can be obtained for any given K

~  in the case of restriction, 
while L  can be obtained from any given L

~ in the case of aggregation. When LCAF  , 
UDBG  ,  and VE   the corresponding explicit contraction mappings are TLUL

~
  and 

VKQK
~

  [15]. 
 
3.4 INCLUSION OF PERFORMANCE INDICES 
Consider the following pair of steady state performance indices for S  and S

~ , respectively, 
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where the matrices xux WWW
~

,,  and uW
~

 are symmetric and positive semidefinite. 

Definition 2.6 The pair )
~

,
~

( JS  includes pair ),( JS  in sense of the optimal feedback control 

law if the controller )
~

,
~

( ** FE  minimizing J
~  includes the controller  ),( ** FE  minimizing J  

and 

).
~

,
~

(
~

),( **** FEFE JJ                                                                           (11) 

Theorem 2.7 If S  is restriction (type c) of S
~ , then the pair )

~
,

~
( JS  includes the pair ),( JS  

in the sense of the optimal feedback control law if  

,
~

,0 11 T
uux

T QWQWVMV                                                                     (12) 

where xM  is obtained from xx
T MUWUW 

~ . If S  is an aggregation (type c) of S
~ , the 

pair )
~

,
~

( JS  includes the pair ),( JS  if 
.11 ~

;
~ T

uux
T

x QWQWUWUW                                                                        (13) 

It follows that, if S  is a restriction of S
~  the optimal feedback gain matrix is 

contractible to the original space by VKQK
~

  . 
 
3.5 OVERLAPPING DECENTRALIZED CONTROL  

The essence of the application of the above exposed inclusion principle to the 
decentralized control design of systems with the overlapping structure S , lies in the 



application of such an expansion which results into S
~  in which subsystems of S  appear 

as disjoint, e.g. [17, 11, 12, 14, 15]. For example, if S  is defined by (3), where ][ ijAA  , 

][ ijBB  , ][ ijCC   },,{ 321  diag , },,{ 3,2,1,  RRRdiagR   and },,{ 3,2,1,  RRRdiagR  , 

)3,2,1,( ji , then we can consider, under certain conditions concerning submatrices 

1331133113 ,,,, CBBAA  and 31C  in BA,  and C , that it is composed of two overlapping 

subsystems 1
~
S  and 2S

~  defined by system matrices ][
~1

ijAA  , ][
~1

ijBB  , ][
~1

ijCC  , 

},{
~

21
1  diag , }{

~
2,1,

1
 RRdiagR  , },{

~
2,1,

1
 RRdiagR  , )2,1,( ji  and ][

~
2 jkAA  , 

][
~ 2

jkBB  , ][
~ 2

jkCC  , },{
~

32
2  diag , },{

~
3,2,

2
 RRdiagR  , },{

~
3,2,

2
 RRdiagR  , 

)3,2,( kj , respectively. After performing an appropriate expansion and extracting the 
corresponding subsystems from S , we shall look for decentralized dynamic controllers 

)
~

,
~

( 11 FE and )
~

,
~

( 22 FE , characterized, in the case of local LQG optimal control, by the gain 

pairs  )
~

,
~

( 11 KL  and )
~

,
~

( 22 KL  , which, after being contracted back to the original space, 

result into a suboptimal controller ),F(E  for S . 
In the above context the main point is to find such pairs of matrices ),(),,( RQVU  

and ).( TS  which enable an expansion with satisfactory decoupling effects, as well as a 
direct contraction to the original space. We shall consider different restriction and 
aggregation relations between S  and S

~  obtained by using these matrices in two 
characteristic forms, e.g 





































I

II

I

U

I

I

I

I

V

000

0)1(0

000

,

00

00

00

00

11                               (14) 

and TUV 12  ; TVU 12  , where   is a scalar satisfying 10   ; matrices R  and T  are 
analogous to V , while Q  and S  are analogous to U . Starting from matrices 

 RRCBA ,,,,,  , matrices 
~~ ,,

~
,

~
,

~
,

~
RRCBA   can be obtained by choosing e.g. matrix AM  in 

AMVAUA 
~ , matrix BM  in BMVBQB 

~ , matrix CM  in CMTCUC 
~ , etc. For 

example, conditions for both restriction and aggregation are satisfied for the following 
matrix A

~
, obtained by using ),( 11 VU :  
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After expansion, the dynamic controller for the resulting S
~  is designed by 

optimizing in the LQG sense separately 1
~
S  and 2S

~ , obtained by cutting A
~  adequately (as 

well as the remaining matrices in S
~ ). The resulting estimator and feedback gain matrices 

121
~

,
~

,
~

KLL  and 2
~
K  give }

~
,

~
{

~
21 LLdiagLD   and }

~
,

~
{

~
21 KKdiagKD  , defining the overall 

controller )
~~

( F,E  for S
~ . The global performance index J

~  for S
~  is constructed by using 



weighting matrices }
~

,
~

{
~ 21

xxx WWdiagW   and }
~

,
~

{
~ 21

uuu WWdiagW  , where the local weighting 

matrices 2121 ~
,

~
,

~
,

~
uuxx WWWW  are chosen in accordance with (10), in order to satisfy inclusion 

of the performance indices J
~  and J . Contraction to the original space is done by 

TLUL
~

 and VKQK
~

  after an eventual modification of either DL
~

 or DK
~

, aimed at 

satisfying contractibility conditions TSLULU
~~

(   or )
~~
VUKQKQ  , having in mind that in 

the case of restriction we can never have a block-diagonal L
~ , and case of aggregation a 

block-diagonal K
~

. The resulting controller ),( FE  is suboptimal with the suboptimality 

degree  , i.e. JJ  *1 , where *J is the minimal value of J  corresponding to the 
globally optimal controller in the original space.  
 
4.  DECENTRALIZED LQG SUBOPTIMAL PLATOON CONTROL 

Following the above exposed line of thought, a decentralized LQG suboptimal 
control strategy will be developed by considering a platoon of vehicles as a concatenation 
of overlapping �subsystems�. The i-th subsystems is defined by the following state model 
(see [13, 14] for the deterministic case) 
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where  
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and  iiiii
T
i avdav 11  . According to (2), the overlapping part in the state matrix is, 

obviously, LA  with both the preceding and the following subsystems. Having in mind the 
formalism of the Inclusion Principle, the above subsystems can be extracted from the 
basic model by expanding the state using a matrix V , which has, for two subsystems, the 
form (14), with appropriate dimensions (generalization to n  vehicles is straightforward).  

The above �subsystems� can hardly be given any precise physical interpretation; 
notice, however, that, formally, the noisy state vectors of the subsystems are supposed to 
be available in each vehicle [9]. The subsystems are not only state overlapping, but also 
input overlapping (they have one input in common), so that the input expansion is 
needed, as well; the corresponding transformation matrix R  has form analogous to V . As 

iu  is essentially the physical control signal in the i-th vehicle, then 1iu  in the 
corresponding subsystem could be considered to represent, together with the 
corresponding part of the subsystem dynamics, the preceding part of the platoon, as 
viewed by i-th vehicle (for the second vehicle  in the platoon this is exactly the leading 
vehicle dynamics). Therefore, iu  depends on the entire subsystem state, and 1iu  only on 
the part of the subsystem state vector overlapping with the preceding subsystem. After 
expansion, the subsystems in the platoon model appear as disjoint. Application of the 
LQG methodology based on the definition of local performance indices leads to local 
state feedback control (depending on the appropriate sets of measurements). Contraction 
to the original space provides a physically implementable control law. 



As the leading vehicle dynamics represents formally a part of each subsystem, we 
shall describe the proposed control strategy consecutively, starting from the leading 
vehicle. 
 
4.1 LEADING VEHICLE CONTROL 

The leading vehicle is supplied with the reference command and uses its own 
state vector for control design. Formally, if the leading vehicle model is represented by  

11 eGuBXAX LLLLL                                                                 (16) 

where  11 avX T
L  , then the optimal feedback control law using noisy measurements 

 avT
L nanvY 1111   (where vn1  and an1  are mutually independent white noise with 

variances vr1  and ar1 , respectively) should be found from the condition for the minimum 
of the performance index 
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where  rr
T
r avX 1  is a  time-varying reference supplied to the first vehicle, known 

entirely in advance, and 0LQ  end 0LR  are corresponding weights. This is, in fact, an 

LQG optimal tracking problem, which can be solved in the following way [1]: 
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where LX�  is obtained by the locally optimal Kalman filter obtained from (16). This 
control law is suboptimal, since the feedforward block is reduced to a constant matrix, 
this is, however, a very reasonable solution, having in mind characteristic forms of the 
reference command signals. A priori choice of the criterion weights can provide different 
tracking properties. Notice that the static steady state error reduces to zero, having in 
mind that  LA  is singular [1]. 
 
4.2 GENERAL SUBSYSTEM CONTROL 

Control of the second vehicle assumes that the leading vehicle control is 
appropriately designed. Consequently, control design for the general subsystem model 
(15) can be decomposed into two parts: first, 1iu  is found and the corresponding 

regulator is implemented and, second, iu  is found for the resulting system by using the 
complete feedback starting from the noisy state measurements. According to (18), we 
have 

  .�� 111111 r
T

iii XMavKu                                                        (19) 
After implementing (19), one comes to the following subsystem model 
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where 1i  is the estimation error for  Tii av 11 ��   obtained by Kalman filter belonging to 

leading vehicle control law. Now, iu  is found from (20) by minimizing                       
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where 0iQ  and 0iR , while ][2 rrr
T
r avdX   is complete set of reference commands. The 

state weighting matrix is assumed to have the following specific form, coming out 
basically from the regulator structure adopted in [9]:  
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In (22), 33q influences the spacing reference tracking, 1p  and 2p  influence 
tracking of the velocity and acceleration of the preceding vehicle, respectively, while 44q  

and 55q  influence velocity and acceleration reference tracking. The problem posed 
belongs to the class of LQG optimal tracking problems with a priori known disturbances 
[1]. An approximately optimal solution, in the sense that all the gains are assumed to be 
constant, is given by 
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iX�  represent the estimate of the subsystem state obtained by using the Kalman filter 
derived from (20), taking into account specific properties of the input disturbance. Notice 
that one disturbance term in (20) comes out from the first optimization step, i.e. from the 
optimal tracking problem solved by 1iu . Consequently, 2M  represent the feedforward 

gain for the complete reference rX 2 , while 3M  compensates the effects of the disturbance.  

The state feedback gain ][ 21
TTT

i KKK   has the LBT structure, in accordance with 
the information supposed to be locally available. The overall feedforward gain matrix 

iM , which can be obtained simply from 1M , 2M  and 3M , multiplies essentially rX 2 , 
since rX 1  is subset of rX 2 . It is important to notice that the steady-state error is again 
zero for constant references. 
 
4.3 PLATOON CONTROL 

Local regulators formulated for the subsystems are to be contracted to the 
original space before implementation. The state feedback gains are obtained according to 
paragraph 3.5 by using the transformation matrix Q  analogous to U with 5.0 , i.e. 

after contraction, one gets VKQK iM
~

 . The feed forward gains multiplying the reference 
signals are not contracted in accordance with the Inclusion Principle, since they are out of 



the feedback loop. The estimator gains are not contracted, as well, having in mind that all 
the local subsystem estimators remain uncontracted in the original system state space; 
formally, IED    in terms of the inclusion of the estimators. The main additional 
requirement is here to keep the steady-state error at zero. It can be easily shown that the 
structure of 2M  and 3M  in (23) is such that the only nonzero elements are 51

2M  and 51
3M ; 

the only nonzero element in 1M  in (18) is 31
1M . It is possible to show that the required 

modification aimed at reducing the steady-state error to zero is to increment 51
3M  in (23) 

by 3551
3

3531
1

3251
3 /)( KkK AMAMAM  , where 1)(  MiiK KBAA  and 

])000[(5.0 12
TTT

M KKK  . The corresponding overall feedforward gain iM   

(multiplying rX 2 ) contains only three nonzero elements: 31
1

32 MM i  , 51
2

51 MM i   and 
51
3

52 MM i  . The overall platoon tracks the command reference in a suboptimal way in the 
LQG sense, preserving the predefined information structure and ensuring the correct 
steady-state regime. 
 
5. EXPERIMENTAL RESULTS 

Numerous simulations have been undertaken; the platoon has been assumed to 
obey the nonlinear model (1) and control has been generated according to the described 
algorithm. Attention has been focused on the choice of the weights in (17) and (22) and 
noise influence. Figures 1 and 2 give time histories for a platoon of eight vehicles, 
containing velocities and inter�vehicle spacings; the first velocity and spacing plots 
correspond to a direct application of LQ feedback (not containing the estimators, [14]), 
while the second plots are obtained by using the whole proposed LQG suboptimal 
algorithm, including the local Kalman filters. The remaining design parameters have been 

 10,200diagQL  , 10LR , 1001 p , 502 p , 50033 q , 30044 q  1055 q , 10iR , so 

that we obtained the following feedback  and  feed forward  gains: ]710.0472.4[1 K ,     

 291.1728.6071.7258.1061.42 K , 721.4431
1 M , 672..2651

2 M , 711.7051
3 M  , 

(for 10 ). Tracking capabilities and noise immunity of the proposed algorithm are 
obvious. Comparison with the results presented in [9] shows a substantial advantage of 
the proposed approach. It is to be noted that it is important to make decision about the 
relative importance of tracking the preceding vehicle velocity and the reference 
command, as well as about the weight of tracking the desired inter-vehicle spacing. The 
choice of the control weights influences the jerk level, which is important having 
especially in mind the introduced nonlinearities.  
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Figure 1 Velocities:  (a)  LQ and (b) LQG 

 
Figure 2 Spacing: (a) LQ and (b) LQG 

 
 
 

6. CONCLUSION 
In this paper the Stochastic Inclusion Principle has been applied to LQG 

suboptimal control of a platoon of automotive vehicles. Identification of input/state 
overlapping stochastic subsystems and their extraction by an appropriate expansion have 
lead to approximate LQG optimization, adapted to the LBT structure of the subsystem 
model. Simulation results show a high efficiency of the proposed algorithm, from the 
point of view of both tracking precision and noise immunity. One of the main problems 
for further investigations is the tracking precision in the case of long platoons. 
 
 
 
BIBLIOGRAPHY  
  
 [1] Anderson O. D. B. and J. B. Moore (1990), �Optimal Control: Linear Quadratic 
Methods�, Prentice  Hall; 
 [2] D. N. Godbole em et all (1996), �Automated Highway Systems�, Proc. 13th IFAC 
Congress,  San Francisco, Volume/L., pp. 121-126; 
 [3] Levine S. W.  and M. Athans (1966), �On the Optimal Error Regulation of a String of 
Moving Vehicles�, IEEE Trans. Autom. Contr. Volume/11, pp. 355-361; 
 [4] Iftar A. and U. Qzguner (1990), �Contractible Controller Design and Optimal Control 
with State and Input Inclusion�, Automatica, Volume/26, pp. 593-597; 
 [5] Kwakernaak H. and R. Sivan (1972), �Linear Optimal Control Systems, J. wiley; 



 [6] Ozguner U. and W. R. Perkins (1978),�Optimal Control of Multilevel Large-Scale 
systems�, Inter. Journal of Control, Vol.ume/28, pp. 967-980; 
 [7] Sheikholeslam S. and C.A.Desoer (1992), �Control of Interconnected Nonlinear 
Dynamic Systems, the Platoon Problem�, IEEE Trans. Autom. Contr., Volume/37., pp. 
806-810; 
 [8] Shladover E. S. et al (1991), �Automatic Vehicle Control Developments in the PATH 
Program�, IEEE Trans. Veh. Techn., Volume/40., pp. 114-130; 
 [9] Shladover E .S. (1991), �Longitudinal Control of Automotive Vehicles in Close 
Formation Platoons�, Journ. Dyn. Sys. Meas. Contr., Volume/113, pp. 231-241; 
[10] Stankoviã S.S. and D.D.�iljak (1989), �Sequential LQG Optimization of 
Hierarhically Structured Systems�, Automatica, Volume/25, pp. 545-559; 
[11] Stankoviã S. S., X. B. Chen, M. R. Matau�ek and D. D. �iljak (1999), �Stochastic 
Inclusion Principle Applied to the Decentralized Automatic Generation Control�, Int. J. 
Contr., Volume/ 72, pp. 276-288; 
[12] Stankoviã S. S., X. B. Chen and D. D �iljak (1996), �Stochastic Inclusion Principle 
Applied to Decentralized Overlapping Suboptimal LQG Control�, Proc. 13thh IFAC 
Congress, Volume/L, pp. 12-18, San Farancisco; 
[13] Stankoviã S. S., M. J. Stannojeviã  and D. D �iljak (1997), �Decentralized 
suboptimal LQ Control of a Platoon of Vehicles�, Proc. 8th IFAC/IFIP/IFORS Symp. 
Transp. Syst., Chania, Greece, Volume/1, pp.81-96; 
[14] Stankoviã.S. S., M J .Stannojeviã  and D. D �iljak (2000), �Decentralized 
Overlapping Control of a platoon of Vehicles�, IEEE Trans. Contr. Syst. Techn., 
Volume/8, No. 5, pp. 816-832; 
[15] Stankoviã S. S. and D.D �iljak (2001), �Contractibility of Overlapping Decentralized 
Control�, System and Control Letters, Volume/44, pp. 189-199; 
[16] Swaroop D. and J. K. Hedrick (1996), �String Stability of Interconnected Systems�, 
IEEE Trans. Autom. Contr., Volume/41. pp. 349-357; 
[17] �iljak D. D. (1991), �Decentralized Control of Complex System�, Academic Press; 
[18] Varaiya P. (1993), �Smart Cars on Smart Roads: Problems of Control��, IEEE 
Trans. Aut.  Control, Volume/38, pp. 195-207. 


