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Abstract

In this paper the stochastic Inclusion Principle is applied to
decentralized LQG suboptimal longitudinal control design of a platoon
of automotive vehicles. Sarting from a stochagtic linearized platoon
state model, input/state overlapping subsystems are defined and
extracted after an adequate expansion. An algorithm for approximate
LQG optimization of these subsystems is developed in accordance with
their hierarchical LBT (lower-block-triangular) structure. Vehicle
controllers obtained after contraction, which leaves local Kalman filters
uncontracted, provide high performance tracking and noise immunity.

Keywords: Platoon of vehicles, Overlapping decompositions, LQG
optimal control, Decentralized control

1. INTRODUCTION

The problem of design of automated highway systems (AHS) has attracted a
considerable attention among researchers, eg. [2, 8]. AHS control architecture proposed
in [8, 2, 18] is based on the introduction of a notion of platoons, groups of vehicles
following the leading vehicles with small intra-platoon separation. Control of platoons
has been studied from different viewpoints [9,7,16]. Main theoretical contributions are
related to the stability problem [7, 16]. It has been shown that an efficient decentraized



control law can be formulated when each vehicle is applied with data representing its
accd eration, velodity, distance to the preceding vehicle, velocity and acceleration of the
preceding vehicle, as well as ve ocity and accel eration references. [9]. However, tuning of
the local regulator parameters has been based on arguments related to reative stability,
without taking into account optimality in any predefined sense structural and signal
uncertainties and possibilities to improve the performance by introducing dynamics into
the regulaor. In [13, 14] a systematic procedure for the design of decentralized
overl gpping platoon controller on the basis of LQ optimization has been described.

In this paper a generalization of the approach in [13, 14] to the stochastic caseis
presented. Namely, the Stochastic Inclusion Principle [11, 12] is applied to the design of
decentralized LQG suboptimal longitudinal control of a platoon of vehicles, taking into
account uncertainty resulting from the influence of the environment and measuring
devices. The first part of the paper contains the results related to platoon modding,
formulated in accordance with [8, 18,2,9,14], taking into account stochastic disturbances
and measurement noise. A linearized stochastic state model for a string of moving
vehicles is derived on the basis of [3, 9, 13]. Each vehicle is described by a state model,
with accel erations, velocities and distances to preceding vehicles as state variables. In the
second part, an outline of the theory of the Stochastic Inclusion Principle is presented. It
is shown that a suitable expansion of the obtained platoon model which possesses the
overl apping structure enables formal extraction of “subsystems” for which local quadratic
performance indices can be formulated. Having in mind both the subsystem model
structure and the available data set [9], an optimization technique resembling to the
methodology for deriving LQ suboptima control for systems with the hierarchical LBT
structure proposed in [6, 10, 14], is devel oped and presented in the third part of the paper.
Each subsystem controller contains a specific Kaman type estimator, together with the
corresponding state feedback gain. Contraction to the origind space provides a
decentralized controller for the whole platoon, leaving al loca state estimators
uncontacted. Experimental results are given in order to illustrate main properties of the
proposed methodol ogy.

2. MODEL FORMULATION
It will be adopted in this paper that i-th automotive vehicle in a close formation
platoon consisting of n vehicles can be represented by the following dynamic modd:

d=v,-V% V=3

a = fai(yi _kiiviz _kiz_ei)1 Y = fji(ai(ui )]

where d, =x_; — % is the distance between two consecutive vehicles, x_, and X

D

represent their positions, v;, a and Yy are the veocity, acceleration and jerk,
respectively, fi() and f j‘ () arestatic nonlinearities of saturation type, «; representsthe
inverse time-constant of the basic vehicle dynamics, ki and ki, constants defining rolling
resistance, u; is the corresponding control input, while g represents the white random

noise force input with variance r,°, resulting from wind gusts and road roughness. A
dlightly modified version of (1) is taken in [9, 13] as the basic model of individual



vehiclesin a platoon. There are severa possibilities for constructing linearized modelsin
the state-space form depending on the choice of state variables, eg. [3, 9, §, 13, 14]. A
convenient form follows directly from (1). Supposing for the sake of simplicity that n=3
and that all the vehid es have the same models, we obtain

X, ] [A° 0 o%x,] [B 0 0Ju] [G, 0 0Te
X,|=|A, A O|X, |+ |0 B O0fu(+/ 0 G, 0]e| )
Xs| [0 A AJX 0 0 B,|u, 0 0 G,|e
where X =[d, v a] (x,=0ind,)and

0 -1 0 0 1 0
A=/0 0 +1|, A =|0 0 0/,B=[0 0 «] G]=[0 1 0]

0 0 -« 0 00

Control design for (2) can, obviously, be based on various methodologies.
However, any attempt to formulate a globally optimal control law for the entire platoon is
faced with the problem that control of each vehicle depends, in general, on the states of
al the remaining vehicles. Permissible control strategies should essentialy be

decentralized, having in mind the supposed information structure [9], i.e theloca control
U, is to be caculated on basis of the noise measurements of the locd vehide state

variables {d. v, a}, together with the noisy information about the velocity and
accd eration of the preceding vehicle {vi P! _l}, which is assumed to be transmitted by
appropriate communication channels. Each vehicle is aso supplied with the information

about the spacing, velocity and acceleration reference command {dr V, ar}. The

theory of large scale systems abounds with methodologies for both decentralized design
of complex control structures and decentralized design of completdy decentraized
contral structures, e.g. [17, 13, 14]. One of eegant and powerful methodologies is based
on the Stochastic Inclusion Principle [11,12].

3. STOCHASTIC INCLUSION PRINCIPLE

3.1 GENERAL ASPECTS
Consider a pair (S,S) of linear stochastic continuous-time dynamic systems

represented by
S: dx= Axdt + Budt + 'd¢, dz=Cxdt+dn

S: dX = AXdt + Bldt + Tdé, dZ = CXdt +d7j
wherex(t,) = X, and X(t,) = X,. Thefirst equationsin (3) are Ito stochastic differential

©)

equations describing the evolution of state vectors x(t) € R"and X(t) € R" of S and S,
respectively, driven by contral inputs u(t) € R™ and G(t) € R™ (it is straightforward to
connect mode (2) with moded (3)). Stochastic disturbances are modeled by Wiener



processes £(t) e R and 5 (t) e R" with incremental covariances R.dt and R-dt,

respectively. The second equations are the observation eguations, where n(t)e RY and
7(t) e RY are Wiener processes with incremental covariances R,dt and R;dt,
respectively. Vectors x, end X, are assumed to be Gaussian with means m, and m,,
and covariances R, and ﬁo respectively. It is assumed tha &(t), »(t) and x,, aswell as
E(t), 7(t) and X, are mutually independent. Matrices A B,I,C,AB,I" and C are assumed
to be constant. The basic assumptionisthat n<n, p<pand q<q.

In general, for a stochastic process «a(t) we shall denote the mean by m, (t) and

covariance by R, (t;,tp) . If a(t) =TA() (Vt=ty), where a(t) and g(t)are n, — and n; -
dimensi onal stochastic processes, respectivdy, and T afull rank matrix, we shall say that
a(t) isagrong (strict) expansion of B(t), i.e. a(t)=Eg[p(t):T], if n, >ng, andthat «(t)is
a strong (strict) contraction of a(t), i.e. a(t)=Ccdpt)T], if n, <ns. If, for the same
processes, m, (t) = Tmy(t) and Ra(tl,t2)=TRﬁ(tl,t2)TT (Vi1 > t) , we shall say that «(t) is
aweak expansion of g(t), i.e. a(t)=E,[B();T] if n, >n,, and a weak contraction, i.e.
a(t)=C,[BM);Tl, if n, <ng.
Definition 2.1 The system Sincludesthe system s if there exist a quadruplet of full rank
Matrices {U n. Vi Rexp» Sqxg} Satisfyinguv =1, such that for any x, and u(t) in s the
conditions X, = E,[%:;V] and U(t) = Eg[u(t);R] imply x(t)=C,[X(t);U] and zt)=C,[Z(t);S]
(Vt=tg) .

The expansion S contains all necessary information about S expressed in terms
of second-order statistics, having in mind the Gauss-Markov properties of x(t),X(t),z(t)
and Z(t) . Weak contractions/expansions are related to the states and outputs, and strong

contractions/expans ons to control inputs.
Restri ction and aggregati on represent two important specid cases of inclusion.

Definition 2.2 The system s is restriction (type ¢, according to [11]) of the system S if
there exist a full rank matrix Vs, such that for any x, the conditions X, = E_[x,;V] and
u(t) = C4[U(t);Q] imply X = E,[x(t);V] and z(t) = E,[2t);T] (Vt=t,).

Theorem 2.1 The system s is restriction (type ) of s if there exist full rank matrices
V,Q and T such that

AV =VA VIRI'V' =TRIT,B=VBQ, CV=TC, TRT'=R;. (4)
Definition 2. 3 Thesystem s isan aggregation (type c) of s if there exist atriplet of full
rank matrices (U,R,S) such that for any X, and u(t) the conditions x, =C_[X,;U] and
u(t) = Eglu(t); Rl imply x(t) =C,[X(t);U] and z(t)=C,[Z(t);S] (Vt=tg).

Theorem 2.2 The system S is an aggregation (type c) of S if there exist full rank
matrices U,R and s such that



UA=AU, TRIT=UTRIUT,

- - ©)
UBR=B, SC=CU, RS =R
3.2INCLUSION OF ESTIMATORS
Consider time-invariant estimators E and E for s and S, respectively,
E: dw = Fedt+ Gudt + Ldz ©

E: d@ = Fadt+Gldt + LdZ
where o(t) e R® and &(t) e R® are the estimator outputs satisfying s<§. State models for
S®=(S,E) and S° = (S,E) are, respectively,

S*: dX = A°Xdt + B®udt + I'°d®

S°: dX = A°Xdt + B°Udt + °d®

where X=[x"0"]", X=[X"a'1", 0=[1T9"1",

el (2 el

matrices A®,B° and I'® are defined analogous. It will be assumed that X, = X(t,) and

)

X, =X(t,) are Gaussian with means M, and M, and covariances RY and RgZ
respectively.

Definition 2.4 The pair (S,E) includes the par (SE) if S includes s, and there exists a
pair of full rank matrices (D4 s,Es,) Saisfying DE =1 such that for given X, and u(t)
the conditions X, =E,[Xy;Vv'] and T(t) = EJ[u(t); R] imply X(t)=C,[X(t)U] (vtxty),
where U” =diag{u,D} and V" =diag{v, E}.

Theorem 2.3 The pair (S,E) is a restriction (type ¢) of the pair (S,E) if the conditions of
Theorem 2.1 are satisfied, together with FE = EF, where E is full rank matrix, and
G=EGQ, LT=EL.

Theorem 2.4 The pair (S,E) isaaggregation (type c) of the pair (S,E) if the conditions of
Theorem 2.2 are satisfied, together withbF=FD. Where D is full rank matrix,
andDGR=G, DL =LS.

3.3 CONTRACTIBILITY OF DYNAMIC CONTROLLERS

Le s’ =(sEF) and S' =(SE,F) where F and F are feedback mappings added
to the pairs (S,E) and (S,E)
F: u=Kw+v, F: G=K@+V €)
where K and K are constant matrices, and v and v reference signals. Obviously, we
have



S': dX =A Xdt+B'vdt +I"dO
S': dX = A Xdt + B'Vdt + " d®

where
. A BK . B . | I” O
A = , B = , I = ;
{LC F+ GK} {G} {O L}

matrices A*,B" and I’ are defined anal ogously.

Definition 2.5 We say tha the dynamic controller (E,F) for S is contractible to the
dynamic controller (E,F) for s if S" indludes s’ inthe sense of Definition 2.1.
Theorem 2.5 The controller (E,F) is contractible to the controller (E,F) when (SE) is
restriction (type ¢) of (S,E) and the condition K =QKE is satisfied.

Theorem 2.6 The controller (E,F) is contractibleto the controller (E,F) when (S,E) isan
aggregation (type c) of (S,E) and the condition K = RKD is satisfied.

The above results show that K can be obtained for any given K in the case of restriction,
while L can be obtained from any given L in the case of aggregation. When F = A-LC,
G=B,D=U and E=V the corresponding explicit contraction mappings are L =ULT and
K =QKV [15].

©)

34 INCLUSION OF PERFORMANCE INDICES
Consider the following pair of steady state performance indices for s and s, respectively,

J(u) = Iim% E(f) (W u™Wuydty: I (@) = | m% E([) (KW, + 0TW, )ty (10)
Tow T

where the matrices W, , W, W, and W, are symmetric and positive semidefinite,

Definition 2.6 Thepair (S,J) includes pair (S,J) in sense of the optimal feedback control

law if the controller (E",F") minimizing J includes the controller (E",F") minimizing J

and

JEF)=J(EF). (11)

Theorem 2.7 If s isrestriction (type c) of S, then the pair (S,J) includes the pair (S,J)

in the sense of the optimal feedback control law if

VIMYV =0, W'=QwW'Q", (12)

where M, isobtained from w=0Tw,U+M,. If S isan aggregation (typec) of s, the

pair (S,J) includesthe pair (S,J) if

W, =U™WU; W *=Qw Q" (13)
It follows that, if s is a restriction of S the optimal feedback gain matrix is

contractible to the original spaceby K =QKV .

3.5 0OVERLAPPING DECENTRALIZED CONTROL
The essence of the gpplication of the above exposed inclusion principle to the
decentralized control design of systems with the overlapping structure s, lies in the



application of such an expansion which results into S in which subsystems of s appear
asdigoint, e.g. [17, 11, 12, 14, 15]. For example, if s isdefined by (3), where A=[A],
B=[B;],C=[Cyj] T =diag{I';,[;,T3}, R =diag{R:1,R:»,R: 3} and R, =diag{R,;,R,,.R,3},
(i,j=123), then we can consider, under certain conditions concerning submatrices
A3, Agq1,B13,B3,C3 and C4 in A/B and C, that it is composed of two overlapping

subsystems S, and S, defined by system matrices A'=[A;], B=[B;], C'=[C;],
' =diag{ly, I}, RY=diag{R:sR: 0}, Ry =diag{R,1,R,0b, (,i=12) and Ay =[Ayl,

B?=[Bj], C?=[Cyl, T?=dag({l,.I'3}, RZ=dag{R:,.R:3}, RZ=dag(R,,.R,3},
(j,k=23), respectively. After performing an appropriate expansion and extracting the
corresponding subsystems froms, we shall look for decentralized dynamic controllers
(E,.F)and (E,.F,), characterized, in the case of local LQG optimal control, by the gain
pairs (L;,K;) and (L,,K,) , which, after being contracted back to the original space,
result into a suboptimal controller (g,F) for s.

In the above context the main point is to find such pairs of matrices U,V),(Q,R)
and (ST) which enable an expansion with satisfactory decoupling effects, as well as a
direct contraction to the original space. We shall consider different restriction and

aggregation relations between s and S obtained by using these matrices in two
characteristic forms, e.g

I 0 O

01 0o I O 0 0
Vi=lo | o Li=[o A a1 o (14
0O O 0 |
0O 0 |

and V,=U{; U,=V", where g is a scalar satisfying 0<p<1; matrices R and T are
andogous to v, while Q and S are andogous to U . Stating from matrices
AB.CTR:,R,, matrices ;&,g,é,f,Rg,R,; can be obtained by choosing e.g. matrix M, in

A=VAU +M ,, matrix Mg in B=VBQ+Mg, matrix M in C=TCU+M., ec. For
example, conditions for both restriction and aggregation are satisfied for the following
matrix A, obtained by using (U,,V;) :
Ay SAe (-B)A2 As
Aoy Ay 0 Aoz
Ay O A As|’
As1 Phy (1-P)Ar Ass

After expansion, the dynamic controller for the resulting S is designed by
optimizing in the LQG sense separately S, and S, , obtained by cutting A adequately (as
well as the remaining matricesin s). The resulting estimator and feedback gain matrices
LK, and K, give Lp=dag{l;,,} and Kp =diag{K;,K,}, defining the overall
controller (E,F) for S. The global performance index J for S is constructed by using

A=



weighting matrices W, =diag{w} W2} and W, = diag{W},wW,2} , where the local weighting
matrices W;,W2 W} w? are chosen in accordance with (10), in order to satisfy inclusion
of the performance indices J and J. Contraction to the original space is done by
L=ULTand K =QKV dafter an eventuad modification of either L, or Ky, amed at
satisfying contractibility conditions (UL =ULTS or QK =QKWU), having in mind that in
the case of restriction we can never have a block-diagonal L , and case of aggregation a
block-diagonal K . The resulting controller (E,F) is suboptima with the suboptimality
degree u, i.e 413" =3, where J"is the minimal value of J corresponding to the
globally optimal controller in the origina space.

4. DECENTRALIZED LQG SUBOPTIMAL PLATOON CONTROL

Following the above exposed line of thought, a decentraized LQG suboptimal
control strategy will be devel oped by consi dering a platoon of vehicles as a concatenation
of overlgpping “subsystems”. The i-th subsystems is defined by the following state model
(see[13, 14] for the deterministic case)

. [A 0 B, 0Ju,] [G, 0Te.,
a3 af o ol Ve eV
where

Ao o RS o g el l-bd

and &' =|v,;a_;d,v, a]. According to (2), the overlapping part in the state matrix is,
obviously, A with both the preceding and the following subsystems. Having in mind the

formalism of the Indusion Principle, the above subsystems can be extracted from the
basic model by expanding the state using a matrix v , which has, for two subsystems, the
form (14), with gppropriate dimensions (generalization to n vehides is straightforward).
The above “subsystems” can hardly be given any precise physical interpretation;
notice, however, that, formally, the noisy state vectors of the subsystems are supposed to
be available in each vehicle [9]. The subsystems are not only state overlapping, but also
input overlapping (they have one input in common), so that the input expansion is
needed, as well; the corresponding transformation matrix R has form analogousto V . As
u; is essentialy the physical control signal in the i-th vehicle, then u,_; in the
corresponding subsystem could be considered to represent, together with the
corresponding part of the subsystem dynamics, the preceding part of the platoon, as
viewed by i-th vehicle (for the second vehicle in the platoon this is exactly the leading
vehicle dynamics). Therefore, u; depends on the entire subsystem state, and u;_, only on

the part of the subsystem state vector overlapping with the preceding subsystem. After
expansion, the subsystems in the platoon model appear as disjoint. Application of the
LQG methodology based on the definition of loca performance indices leads to local
state feedback control (depending on the appropriate sets of measurements). Contraction
to the original space provides a physically implementable control law.



As the leading vehicle dynamics represents formally a part of each subsystem, we
shall describe the proposed control strategy consecutively, starting from the leading
vehicle.

4.1 LEADING VEHICLE CONTROL
The leading vehicle is supplied with the reference command and uses its own
state vector for control design. Formally, if the leading vehide modd is represented by

X, =AX_ +Bu+Ge (16)
wherex[ =[v, a], then the optima feedback control law using noisy measurements
‘A =[v1+n1’ aﬁ+nf] (where ny and n? are mutually independent white noise with
variances ry’ and r?, respectivey) should be found from the condition for the minimum
of the performance index

J = E{J:[(XL — Xy) QX = Xy, ) + RLulZ}jt} (17)

where X =[v, a] is a timevarying reference supplied to the first vehide, known
entirdy in advance, and Q, >0 end R, >0 are corresponding weights. Thisis, in fact, an
L QG optimal tracking problem, which can be solved in the following way [1]:
u =-K,X, —=M;X;,, K;=R'B[P_,

M, = R[lBE (A _BLK:L)_TQL! PLA +A1TP|_ _PLBLRL_lBE PL+Q =0
where X, is obtained by the locally optima Kaman filter obtained from (16). This

control law is suboptimal, since the feedforward block is reduced to a constant matrix,
this is, however, a very reasonable solution, having in mind characteristic forms of the
reference command signals. A priori choice of the criterion wei ghts can provide different
tracking properties. Notice that the static steady state error reduces to zero, having in
mindthat A_issingular [1].

(18)

4.2 GENERAL SUBSYSTEM CONTROL

Control of the second vehicle assumes that the leading vehicle contral is
appropriately designed. Consequently, control design for the general subsystem model
(15) can be decomposed into two parts: first, u;; is found and the corresponding

regulator is implemented and, second, u; is found for the resulting system by using the

complete feedback starting from the noisy state measurements. According to (18), we
have

Uy = _Kl[\A/i—l é1'-1]T - M Xy (19
After implementing (19), one comes to the following subsystem model

S R R N
A A]M[B]TT0 6 ]e] 0 0



where ¢, , isthe estimation error for [v,;, & _,]" obtained by Kaman filter belonging to
leading vehicle control law. Now, u; isfound from (20) by minimizing

3 ={[l6 - %20 Qe - o) + Ruth}. @y

where @ >0 and R >0, while xJ. =[d, v, a,] iscomplete set of reference commands. The

state weighting matrix is assumed to have the following specific form, coming out
basicdly from the regulator structure adopted in [9]:

P 0 0 - 0
0 p O 0 -p2
Q=0 0 gz 0 o | (22)

-pp O 0O qu+p 0
0 -p2 O 0 Os5 + P2

In (22), qginfluences the spacing reference tracking, p, and p, influence
tracking of the velocity and accel eration of the preceding vehid e, respectively, while g,
and gg; influence velocity and acceleration reference tracking. The problem posed
beongs to the class of L QG optima tracking problems with a priori known disturbances
[1]. An approximatdy optimal solution, in the sense that all the gains are assumed to be
constant, is given by
Ui = —KyXi = MXo —MaXy: Ko = R7BTR, My =RMB[(A-BKy) ' Q
M3 =R™'Bl (A ~BKy) " PBy, PA + AR -RBR'BIR+Q =0
where

(23)

_AL__BLKl 0
A{ A A

X; represent the estimate of the subsystem state obtained by using the Kaman filter

derived from (20), taking into account specific properties of the input disturbance. Notice
that one disturbance term in (20) comes out from the first optimization step, i.e. from the
optimal tracking problem solved by u;_;. Consequently, M, represent the feedforward

gain for the compl ete reference x ,, , while M; compensates the effects of the disturbance.

The state feedback gain K =[K{ KJ1] hastheLBT structure, in accordance with
the information supposed to be locally available. The overdl feedforward gain matrix
M;, which can be obtained simply from M,, M, and M5, multiplies essentialy X, ,
since X, issubset of X, . It isimportant to notice that the steady-state error is again
zero for constant references.

},sz[o B,}BY =[-M,; 0]

43 PLATOON CONTROL

Loca regulators formulated for the subsystems are to be contracted to the
origina space before implementati on. The state feedback gains are obtained according to
paragraph 3.5 by using the transformation matrix Q analogous to U with=0.5, i.e.

after contraction, one getsk,, =QK,\v . The feed forward gains multiplying the reference
signas are not contracted in accordance with the Inclusion Principle, since they are out of



the feedback 1oop. The estimator gains are not contracted, as well, having in mind that all
the local subsystem estimators remain uncontracted in the origina system state space;
formally, D=E=1 in terms of the inclusion of the estimators. The man additional
requirement is here to keep the steady-state error at zero. It can be easily shown that the

structure of M, and M in (23) is such that the only nonzero dements are M3t andm$?;

the only nonzero dement in M, in (18) isM. It is possible to show that the required
modification aimed at reducing the steady-state error to zero is to increment m$ in (23)

by AMS" = ~(AZME+ APMEY I AZ where A =(A-BKy)™ and
Ky =05(KJ+[0 0 0 K{]). The corresponding overdl feedforward gain wMm;
(multiplying X, ) contains only three nonzero dementssm®=m3, mPt=m3! and
M2 = M3 . The overall platoon tracks the command reference in a suboptimal way inthe

LQG sense, preserving the predefined information structure and ensuring the correct
steady-state regime.

5.EXPERIMENTAL RESULTS

Numerous simulations have been undertaken; the platoon has been assumed to
obey the nonlinear modd (1) and control has been generated according to the described
algorithm. Attention has been focused on the choice of the weights in (17) and (22) and
noise influence. Figures 1 and 2 give time histories for a platoon of eght vehicles,
containing velocities and inter—vehicle spacings; the first velocity and spacing plots
correspond to a direct application of LQ feedback (not containing the estimators, [14]),
while the second plots are obtained by using the whole proposed LQG suboptimal
algorithm, including the local Kaman filters. The remaining design parameters have been
Q. = diag{200,10}, R =10, p; =100, p, =50, Qg3 =500, guy =300 Qg5 =10, R =10, SO
that we abtained the following feedback and feed forward gains. k,=[4.472 0.710],

Ky=[-4061-1.258-7.071 6.728 1.291], Ml =44721, WMI=26.672, M3'=-70711
(fora =10). Tracking capabilities and noise immunity of the proposed algorithm are
obvious. Comparison with the results presented in [9] shows a substantial advantage of
the proposed approach. It is to be noted that it is important to make decision about the
relative importance of tracking the preceding vehicle veocity and the reference
command, as well as about the weight of tracking the desired inter-vehicle spacing. The
choice of the control weights influences the jerk levd, which is important having
especially in mind the introduced nonlinearities.
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6. CONCLUSION

In this paper the Stochastic Indusion Principle has been applied to LQG
suboptimal control of a platoon of automotive vehicles. Identification of input/state
overl gpping stochastic subsystems and their extraction by an appropriate expansion have
lead to approximate LQG optimization, adapted to the LBT structure of the subsystem
model. Simulation results show a high efficiency of the proposed algorithm, from the
point of view of both tracking precision and noise immunity. One of the main problems
for further investigations is the tracking precision in the case of long platoons.
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