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Abstract

The non-Gaussian random fields are used to modelling some dynamic
loads generated by wind turbulence, ocean waves, earthquake ground mo-
tion etc. These fields also represent the uncertain properties of different
materials (reinforced concrete, composite, soils etc.).

This paper presents some methods and the corresponding algorithms
to the numerical simulation of stationary non-Gaussian random fields
characterized by power spectral density or equivalently autocorrelation
function and by the marginal probability distributions. The considered
methods include the generation of stationary Gaussian random fields based
on the spectral representation theorem and their transformation of these
fields in stationary non-Gaussian random fields.

Keywords: Stochastic processes, random fields, Gaussian and non-
Gaussian random fields, translation processes and fields

1 Introduction and theoretical framework

The applications of random processes and fields theory in the area of engineer-
ing mechanics and structural engineering refer to random vibration problems
concerning the random loads and are extended to stochastic structural and
geotechnical systems considering the random material properties of different
continuous media.

The important studies in the numerical simulation of random processes and
fields were be done by Shinozuka and Deodatis [5], Yamazaki and Shinozuka [9],
Grigoriu [2], Deodatis and Koutsourelakis [1], Xu and Graham-Brady [8] etc.

The theoretical framework [2, 3], of the next sections is presented in the
following.

Let X : I × Ω → R
d be a function of two arguments; t ∈ I ⊂ R (or [0,∞) )

and ω ∈ Ω , with {Ω, F, P} a probability space.
Definition 1. If X(t) ∈ R

d is a random vector on probability space {Ω, F, P},
(∀)t ∈ I, that is X(t) ∈ F, (∀)t ∈ I, then X is said to be a d-dimensional

real random process, or vector stochastic process. The function X(., ω)
is called a sample path or a realization of X for a fixed ω. The function
X(t, .) is a random d -dimensional real vector for a fixed t.
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Let {Ω, F, P} be a probability space and X : D×Ω → R
d, a function of two

arguments, ξ ∈ D ⊂ R
q, q ≥ 1 is an integer and ω ∈ Ω.

Definition 2. If X(ξ) is a random d -dimensional vector on the probability
space {Ω, F, P}, (∀)ξ ∈ D, that is, X(ξ) ∈ F, (∀) ξ ∈ D, then X is called
random d-dimensional real field in D.

Definition 3. A stochastic process X is Gaussian if all its finite dimensional
probability distributions are Gaussian, that is,

Fn(x(1), x(2), . . . , x(n); t1, t2, ..., tn) = P

(

n
⋂

i=1

{

X(ti) ∈
d
∏

k=1

(−∞, xk]

})

,

where x(i) = (xi,1, ..., xi,d) ∈ R
d, n ≥ 1, is Gaussian.

Definition 4. The process X is stationary in the strict sense, or station-

ary , if
(X(t1), ...,X(tn)) = (X(t1 + τ), ...,X(tn + τ)) ,

where (∀n ≥ 1), ti 6= tj , i 6= j, i, j = 1, n, (∀)τ ∈ I.
Remark 1. The marginal probability distributions of a random stationary
process are invariant in time.
Definition 5. A process X is a translation process if its all coordinates
are memoryless, measurable, nonlinear functions of a Gaussian d -dimensional
process G, that is, Xi(t) = gi(G(t)) and gi : R

d → R, i = 1, d, are measurable
functions, (∀)t ∈ I.
Remark 2. The coordinates of X, Xi(t) = gi(G(t)), i = 1, d, gi : R → R are,
generally, real-valued functions. If the processes Gi are independent and Xi(t) =
gi(Gi(t)), i = 1, d, then the non-Gaussian processes Xi are independent of each
other, otherwise the coordinates of X are dependent non-Gaussian processes.
Definition 6. The moments of order q =

∑d
i=1 qi of X are given by

µ(q1, ..., qd) = E
[

∏d
i=1 X

qi

i

]

, if the moments of order qi of Xi exist and are

finite.
Mean µi = E [Xi] = µ(q1, ..., qd), qi = 1, qj = 0, i 6= j.
Correlation of (Xi,Xj), ri,j = E [XiXj ] = µ(q1, ..., qd), qi = qj = 1, ql =
0, l 6= i, l 6= j.
Covariance of (Xi,Xj), ci,j = E [(Xi − µi) (Xj − µj)] = ri,j − µiµj .

Variance of Xi, σ2
i = ci,i = E

[

(Xi − µi)
2
]

= ri,i = µ2
i .

Definition 7. The process X is defined as weakly stationary or stationary

in the weak sense if:

1) The mean µ(t) = µ = const, is time invariant and

2) The correlation and the covariance functions (r(t, t′), c(t, t′)) depend only
on the time lag τ = t − t′, that is, r(t, t′) = r(τ), c(t, t′) = c(τ).

Definition 8. Let Y (t), t ∈ R
d′

, be a R
d- valued stationary Gaussian process

(d′ = 1) or a homogeneous Gaussian field (d′ > 1). The argument of Y is time
for stochastic processes or spatial coordinates for random fields. It is considered
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that Y = (Y1, ..., Yd) , Yi 7−→ N (0, 1), i = 1, d, g : R
d → R

d is a continuous
function.

The function X(t) = g (Y (t)) is a non-Gaussian translation stochastic

process or a translation random field , Xi(t) = gi (Yi(t)) , i = 1, d.
Examples. [2, 6, 7] a) Gaussian fields. Let Fi, i = 1, d be some distribution
functions, Φ denote the N (0, 1) Gaussian distribution and gi = F−1

i ◦ Φ. Then
Xi 7−→ Fi, i = 1, d and the correlation functions are

ρi,j(τ) = E [Xi(t + τ)Xj(t)] =

∫∫

R2

gi(u)gj(v)ϕ (u, v, ρi,j(τ)) dudv,

where ϕ (u, v, ρi,j(τ)) is density function of an R
2-valued Gaussian variable with

mean zero, variance one and correlation coefficient ρi,j .
b) Lognormal fields. If Y (t) is a homogeneous, zero-mean, unit-variance
Gaussian field, the random fields obtained by X(t) = eµ+σY (t), are called Log-

normal fields that are characterized by the one-dimensional marginal lognormal

probability density function fX(x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 .

c) Gamma fields. If Yj is a collection of i.i.d. Gaussian fields with mean 0
and variance 1, then the random fields obtained via the transformation Xm(t) =
1
2

∑2m
j=1 Y 2

j (t) are called Gamma fields. That is because the corresponding one-
dimensional marginal probability density function is a Gamma distribution with
m degrees of freedom fXm

(t) = 1
Γ(m) t

m−1e−t, t ≥ 0.

d) Beta fields. Given two independent Gamma fields, say Xm and Xn, char-
acterized by same correlation coefficient, the random fields obtained via the

transformation Xmn(t) =
Xm(t)

Xm(t) + Xn(t)
are Beta fields, because their one-

dimensional marginal probability density function is a Beta(m,n) distribution:

fXmn
(t) = 1

B(m,n) t
m−1 (1 − t)

n−1
, 0 ≤ t ≤ 1.

Remark 3. a) The probability density function of X is

fn(x1, ..., xn; t1, ..., tn) = ϕ(y1, ..., yn; ρ)

n
∏

i=1

f(xi)

ϕ(yi)
,

where: Y = (Y (t1), ..., Y (tn)) is a Gaussian vector with mean 0 and covariance

ρ = {ρ(ti − tj) = E [Y (ti)Y (tj)]} , xi ∈ R, tj ∈ R
d′

, i = 1, n,

ϕ (y1, ..., yn) is the density probability function of Y, and yi = Φ−1 (F (xi)).
b) The translation random processes and fields are stationary, can follow any
marginal distribution and their correlation function is completely defined by
marginal distribution Fi and the covariance functions ρi,j of Y . Generally,
the marginal distributions Fi and the correlation functions ρi,j are available in
applications, for example, they may be estimated from records of X.
Proposition 1. For d = 1, the translation process (field) has the marginal
distribution function F .
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P (X(t) ≤ x) = P
((

F−1 ◦ Φ
)

(Y (t)) ≤ x
)

= P
(

F−1 (Φ (Y (t))) ≤ x
)

=

P
(

Y (t) ≤ Φ−1 (F (x))
)

= F (x).

From here follows Remark 3.b.

2 Numerical simulation of Gaussian random fields

2.1 Representation Theorems

Spectral representation theorem shows that each weakly stationary process can
be approximate by a superposition of harmonics. These theorems can be con-
sidered to develop models for generating sample paths of stationary Gaussian
processes, which consist of a superposition of harmonics with:

1) fixed frequencies and random amplitudes,

2) random frequencies and amplitudes.

Bochner’s Theorem. [2] A continuous function r : R → C is positive definite
if and only if it has the representation r(τ) =

∫

eivτdS(v), where S is a real-
valued, increasing and bounded function.
Remark 4. a) If X is a real-valued weakly stationary process, then its corre-
lation function r(τ) = E [X(t + τ)X(t)] is a positive definite function and thus
there exists a real-valued, increasing and bounded function S, i. e. the equation
in Bochner’s theorem holds. The function S is called spectral distribution of

X. If S is absolutely continuous, there exists a function s(v) = dS(v)
dv

, v ∈ R,
called spectral density or mean power spectral density of X.
b) Correlation function and spectral power density are Fourier pairs, that is,
r(τ) =

∫∞

−∞
eivτs(v)dv and s(v) =

∫∞

−∞
e−ivτr(τ)dτ .

Spectral representation theorem (complex case). If X is a complex-valued,
weakly stationary and mean square continuous process

(

limτ→0 E
[

‖X(t + τ)−
X(t)‖2

]

= 0
)

with spectral distribution S and spectral density s, then there is
a complex-valued process with orthogonal increments Z such that

X(t) =

∫ ∞

−∞

eivtdZ(v), (∀) t ∈ C,Z(−∞) = 0, E [Z(t)] = 0,

E
[

|Z(v)|2
]

= S(v), E
[

|dZ(v)|2
]

= dS(v) = s(v)dv

Spectral representation theorem (real case). If X is a real-valued, weakly
stationary and mean square continuous process with spectral density s, then
there are two real-valued processes with orthogonal increments U and V such
that X(t) =

∫∞

0
[cos(vt)dU(v) + sin(vt)dV (v)] and

E [U(v)] = E [V (v)] = 0, E [dU(v)dV (v′)] = 0,

E
[

dU(v)2
]

= E
[

dV (v)2
]

= g(v)dv, (∀) v, v′ ≥ 0.
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2.2 Simulation of Gaussian homogeneous random field us-

ing specified second order moments and fixed frequen-

cies

Proposition 2. [2] If max1≤p≤n vp → n → ∞0, min1≤k≤d′ v∗
k → ∞, then

X(n)(t) =

n
∑

p=1

[Ap cos(vpt) + Bp sin(vpt)] (1)

is a sample of X, where: vp ·t =
∑d′

k=1 vp,ktk, vp = (vp,1, ..., vp,d′), t = (t1, ..., td′),
Ap, Bp 7−→ N (0, 1) i.i.d., and X is a R

d-valued random field, X : D × Ω →
R

d, D ⊂ R
d′

, d, d′ ≥ 1, D1, ...,Dn is a partition of D, vp ∈ Dp, interior

point, generally D is a bounded rectangle centered at the origin of R
d′

, D =
∏d′

k=1 [−v∗
k, v∗

k] , v∗
k > 0.

Algorithm 1. The generation of a sample of random Gaussian homo-

geneous field X (Shinozuka method)[4, 5]

Step 1. Consider a cutoff frequency v∗
k > 0, k = 1, d′, D =

∏d′

k=1 [−v∗
k, v∗

k],

partition D =
∏d′

k=1 [−v∗
k, v∗

k] , v∗
k > 0 in n rectangles and select frequencies vp

in theses rectangles, p = 1, n.
Step 2. Generate Ap, Bp 7−→ N (0, 1) i.i.d.

Step 3. Calculate X(n)(t) using (1), t ∈ S ⊂ R
d′

.
Particular case for d′ = 2. We assume quadrant symmetry of spectral power

density with respect to the origin. Let Nx and Ny be the number of points

between 0 and v∗
1 , v∗

2 , ∆v1 =
v∗

1

Nx
, ∆v2 =

v∗

2

Ny
, v1k = k∆v1, v2l = l∆v2, k =

1, Nx, l = 1, Ny, Mx, My the number of points on the Ox, respectively Oy axes,

Nx < Mx, Ny < My, ∆ξx = 2πNx

v∗

1Mx
, ∆ξy =

2πNy

v∗

2My
, xp = p∆ξx, p = 0,Mx − 1,

yq = q∆ξy, q = 0,My − 1.
Thus, a sample of random Gaussian field is:

Y (xp, yq) =
√

2

Nx
∑

k=1

Ny
∑

l=1

Akl [cos (v1kxp + v2lyq + Φkl) + cos (v1kxp − v2lyq + Ψkl)]

Akl =
√

2s(v1k, v2l)∆v1∆v2, k = 1, Nx, l = 1, Ny,

Akl = 0 for k = 0 or l = 0,

Φ,Ψ i.i.d. uniform distributed on [0, 2π].
The corresponding spectral density is

s(v1k, v2l) =
1

∆v1∆v2

∣

∣

∣

∣

∣

∣

1

MxMy

Mx−1
∑

p=0

My−1
∑

q=0

Y (xp, yq)e
−i(v1kxp+v2lyq)

∣

∣

∣

∣

∣

∣

2

.

This algorithm will be applied in the Section 4.
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2.3 Simulation of Gaussian homogeneous random fields

using random frequencies and amplitudes

Definition 8. [2] Let N be a Poisson process defined on R
d′

with intensity
λ > 0, Tk, k = 1, N , random points uniformly distributed on R

d′

, Yk, k = 1, N ,
random variables i.i.d. with distribution function F , having zero mean and
variance µ2 = E

[

Y 2
k

]

< ∞, v = (v1, ..., vd′) ∈ D ⊂ R
d′

, a bounded Borel

subset of R
d′

, D(T ) = D ∩
(

∏d′

j=1 [Tj ,∞)
)

, T = (T1, ..., Td′), then C(v) =
∑N(D)

k=1 Yk1D(Tk)(v) is said a compound Poisson process.

Proposition 3. [3] Let Cp(v) =
∑Np(D)

k=1 Yp,k1D(Tp,k)(v), p = 1, 2, be two
compound Poisson processes, where Np and Yp,k are independent copies of N

and Yk, respectively, and the random variable Tp,k representing the random

points in the definition of compound Poisson process C. If ξ(v)2 = s(v)
λµ2 , λ → ∞,

and D approaches R
d′

, then

X(λ)(t) =

N1(D)
∑

k=1

ξ(T1,k)Y1,k cos(T1,kt) −
N2(D)
∑

k=1

ξ(T2,k)Y2,k sin(T2,kt) (2)

becomes a sample of the homogeneous Gaussian field X.
Algorithm 2. The generation of a sample of random Gaussian homo-

geneous field X (Grigoriu method) [2]

Step 1. Select cutoff frequencies v∗
k, k = 1, d′, D =

∏d′

k=1 [−v∗
k, v∗

k], λ > 0 the
intensity of Poisson processes Np, and a distribution function F of Y , such that

ξ(v)2 = s(v)
λµ2 .

Step 2. Generate samples of the Poisson points
(

Tp,1, ..., Tp,Np(D)

)

, p = 1, 2,

and the processes
(

Yp,1, ..., Yp,Np(D)

)

, Yp,k 7−→ F i.i.d.

Step 3. Calculate X(λ)(t) using (2), t ∈ S ⊂ R
d′

.

3 Algorithms for numerical simulation of trans-

lation non-Gaussian random fields

Yamazaki and Shinozuka [9]proposed an iterative method for generation a non-
Gaussian stationary random field, having specified marginal probability distri-
butions and spectral power density, using a Gaussian stationary random field.
We consider a Gaussian field X, with zero mean and variance σ2

X = σ2.
Algorithm 3. The generation of a sample of random non-Gaussian

homogeneous field (Yamazaki-Shinozuka method)
Step 1. Input power spectral density sX and marginal probability distribution
FX of non-Gaussian field X ; consider the Gaussian random field Y with mean
zero, variance σ2

Y = σ2
X and spectral densitz sY = sX . Generate the Gaussian

random field Y (1); X(1) = g
(

Y (1)
)

,
(

g = F−1
X ◦ Φ

)

; k := 1.
Step 2. Repeat

Calculate s
(k)
Y , s

(k)
X , s

(k+1)
Y := sX

s
(k)
X

s
(k)
Y
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Generate Y (k+1) having the power spectral density s
(k+1)
Y ;

Calculate X(k+1) := g
(

Y (k+1)
)

;

Until s
(k+1)
X ≈ sX .

Step 3. Return X(k+1) as a sample of X.
Deodatis and Koutsourelakis [1] modified this algorithm, considering an ex-

ponent α in the formula to correct the power spectral density, such that in step
2 of algorithm 3

s
(k+1)
Y :=

(

sX

s
(k)
X

)α

s
(k)
Y (3)

They established by numerical experiments that α = 0.3 gives a good conver-
gence of algorithm.

Another modification in the algorithm 3 was introduced by Zerva [10] that
calculates the spectral density function in v1k + ∆v1

2 , v2l + ∆v2

2 , k = 1, Nx,

l = 1, Ny.
Xu and Graham-Brady [8] considered an algorithm similar to algorithm 3,

but the equation to correct the spectral power density is

s
(k+1)
Y = sX − s

(k)
X + s

(k)
Y , (4)

for numerical simulation of random non-Gaussian processes.
Remark 5. In the ideal case when the power spectral density of non-Gaussian
generated field is identical with the target, then power spectral density of Gaus-
sian field don’t modified for the next iterations and from this point of view the
two equations for the correction of spectral density, (3) and (4), are equivalent.

In the algorithm proposed by Xu and Graham-Brady [8] the spectral den-

sities s
(k)
Y , s

(k)
X are not calculated for each sample of the processes Y , respec-

tively X. The algorithm generates M samples of Y , Y
(k)
1 , ..., Y

(k)
M and consider

Y (k) = 1
M

∑M
j=1 Y

(k)
j . The algorithm stops when

∥

∥

∥
sX − s

(k)
X

∥

∥

∥
< ǫ.

We apply this average to generate the non-Gaussian random fields in algo-
rithm 4.
Algorithm 4. The generation of a sample of random non-Gaussian

homogeneous field

Step 1. Input the power spectral density sX and the marginal distribution
function FX of the non-Gaussian field X; consider the Gaussian random field
Y with mean zero, variance σ2

Y = σ2
X and spectral density sY = sX ; consider

M the number of necessary samples to average. Generate Gaussian field Y (1);
X(1) = g

(

Y (1)
)

,
(

g = F−1
X ◦ Φ

)

; k := 1.
Step 2. Repeat

Calculate s
(k)
Y , s

(k)
X , s

(k+1)
Y using (3) or (4);

For j := 1 : M generate Y
(k+1)
j having spectral density s

(k+1)
Y ;

Calculate Y (k+1) = 1
M

∑M
j=1 Y

(k+1)
j ; Calculate X(k+1) := g

(

Y (k+1)
)

;
k := k + 1;

Until s
(k+1)
X ≈ sX .

Step 3. Return X(k+1) as a sample of X.
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4 Numerical application

We consider, as benchmark application a homogeneous two-dimensional non-
Gaussian random field with Beta marginal probability density [9],

f(x) =







1

B(q, p)

(x − xmin)q−1(xmax − x)2

(xmax − xmin)q+p−1
, if xmin ≤ x ≤ xmax

0, otherwise

,

F (x) = Bu(q,p)
B(q,p) , xmin ≤ x ≤ xmax, and Bu(q, p) =

∫ u

0
tq−1(1 − t)p−1dt, u =

x−xmin

xmax−xmin
.

The mean and variance of the Beta distribution are µ = xmin + q
q+p

(xmax −
xmin),

σ2 =
qr (xmax − xmin)

2

(q + p)2(q + p + 1)
.

If the mean and the variance are known, it can obtain the range of variation
of x, such that:

xmin = µ − σ

√

q(q + p + 1)

p
, xmax = µ + σ

√

p(q + p + 1)

q
.

The spectral density s(v1, v2) = σ2 δ2

4π
e−

d2(v2
1+v2

2)

4 is quadrant symmetrical
with respect to the origin, where: µ = 0, σ = 1, δ = 1, q = 4, p = 2, ν∗

1 = ν∗
2 =

1.6π, Nx = Ny = 32, Mx = My = 64.
Figures 4, 5, 6 and 7 present the results of simulation after five iterations

(M5=), concerning the spectral density functions and samples of Gaussian and
Beta fields obtained using the algorithm 4.

Figure 1 Figure 2
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Figure 3 Figure 4

Figure 5 Figure 6

Figure 7
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