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Abstract 
In this paper is described how to efficiently solve a convex quadratic 
programming problems using a generalization of the interior �point 
method. 
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The interior-point method finds a solution for the Karush-Kuhn-Tucker (KKT) 
conditions of the quadratic problem, being a alternative to Newton method. In the 
interior-point method at each iteration to compute the searching  direction which leads to 
solving a linear system. 

M is a square, positive semidefinite matrix, nnRM   and a is a vector nRq . 
The problem is to find vectors z, x and s such that  
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The name of the problem is realizable  interior-point method (MRPI): 

Here 11M  and 22M  are square submatrices of M with dimensions 1n  and 2n  
respectively, and the vector q  is partitioned accordingly. The condition (1) is the 

condition of infeasible, and 0sxT  is the condition of complementarity.. 
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The realizable  interior-point method starts at point ),,( 000 sxz , where 

0,0 00  sx , but possibly infeasible with respect the constraints (1). All iterates 



),,( kkk sxz  retain the positivy properties 0,0  kk sx , but the infeasibilities and 
the complementary gap defined by: 

2/)( nsx kTk
k                                          (3) 

are gradually reduced to zo zero as k . Each step of the algorithm is a modified 
Newton step for the system of nonlinear equations defined feasibility conditions (1) and 
the complementarity 2,,2,1,0 nisx ii  . 

 We can write this system as: 
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where we have used the notation 
),,,(diag

221 nxxxX  , ),,,(diag
221 nsssS  . 

The algorithm has the following form: 

 Given: ),,( 000 sxz , with 0,0 00  sx . 

 for ,2,1,0k     

- For some k   )1,0( solve: 
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to obtain ),,( kkk sxz  , where 

  112111 qxMzMr kkk  , 

  222212 qsxMzMr kkkk  , 

                          Te )1,,1,1(  , 
- set: 

),,(),,(),,( 111 kkk
k

kkkkkk sxzsxzsxz   ,                        (6) 

for some ]1,0(k  that retains 0),( 11  kk sx . 

 repeat 
 

Note that (5) differs from the pure Newton step for (4) only because of the term 
ekk  on right-hand side. This term plays a stabilizing role, ensuring that the algorithm 

converges steadily to a solution (1)-(2). The only two parameters to choose in algorithm 
are the scalars  k  and k , .The convergence analysis leaves the choice of k  relatively 

unfettered ( it is often confined to the range ]8.0,[ , where is a fixed parameter, 

typically 310 ) but k is required to satisfy the following conditions. 



a) The ratios k
kr /1  and  k

kr /2 should decrease monotonically with k . 

b) 2,,2,1, nisx ii   should remain bounded away from zero for all i  and all k . 

c)  k  should decrease at each iterate. 

In practical implementations of algorithm, k  often is chosen via the following 

simple heuristic. First we set max
k  to be the supremum of the following set: 

 0),,(),,(|]1,0(  kkkkkk sxzsxz .                                                 (7) 
Then we set 

)995.0,1min( max
kk   .                           (8) 

 The major operation to be performed at each step of algorithm is the solution of 
the linear system (5). The matrix in this system obviously has a lot of structure due to the 

presence of the zero blocks and the diagonal components kSI ,  and kX . Additionally, 
the matrix M is sparse in most cases of practical interest, including our motivating 
problem (1) , so sparse matrix factorizations are called for. 
 The first step in solving (5) is to eliminate the s  component. Since the diagonal 

elements of kX  are positive, we can rearrange the last block in (5) to obtain

 )()()()( 11 kk
kk

k
k

kk
kk

kkk xSeXsxSeeSXXs   . 

By substituting into the first two rows in (5), we obtain: 
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In most cases, some of the partitions 22211211 ,,, MMMM  are zero or diagonal 
or have some other simple structure, so further reduction of the system (9) is usually 
possible. This phenomenon happens, for instance, when (1), (2) is derived from a linear 
or quadratic program. 

We now show how convex quadratic programming problems can be expressed in the 
form (1), (2) and solved via algorithm MRPI. We consider the following general convex 
quadratic program: 

zcQzz TT

z


2

1
min                                       (10) 

hHz  , 
gGz  , 

where Q  is a symmetric positive semidefinite matrix. 
The  KKT conditions for this system are: 

cGHQz TT  ,                                      (11) 

hHz  , 
gtGz  , 

0Tt , 
0,0 t . 



The following identifications confirm that the system (11) can be expressed in the form 

(1), (2):     OMGM
G

M
H

HQ
M

TT




















 22211211 ,0,

0
,

0
 , 

gq
h

c
q 








 21 , , 

tsx
z

z 









 ,, . 

The reduced form (9) of the linear system to be solved at each iteration of algorithm is  
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where mt kTk
k /)(  , m is a number of inequality constraints in (10). It is customary 

to multiply the last two block rows in (12) by �1, so that the coefficient matrix is 
symmetric indefinite. 
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Since  kk T1)(   is diagonal with positive diagonal elements, we can eliminate  from 
(13) to obtain an even more compact form: 
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EXAMPLE 

We consider the problem with the following transfer function: 

 
0001.0s0083.0s1155.0s3466.0s

0011.0
sH

234 
  

with the poles: -0.0158, -0.0718 ºi -0.1295  0.2736i. 
For transfer function H(s) results the following standard realisation: 
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coresponding to system: 
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with the performance criterion 

,
2

1 2uJ   

 To obtain the discret model we calculate the matrix   and   with the sampling 
period T=2s. 
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Then the discrete model of problem becomes: 
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  )(0011.0000)( kxky  , 
with the performance criterion: 
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The command is restricted with: 
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Because the matrix )(   is nonsingular we can formulate the equivalent quadratic 
programming problem. We define the vectors and matrix as below: 
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Then, the discrete model is equivalent with the following quadratic problem: 



Qzz T

z 2
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min  

hHz   

gGz  . 

The KKT conditions for this problem are: 

0 TT GHQz , 

hHz  , 

gtGz  , 

0,0,0   Ttt , 

and the following substitutions: 
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shows that the KKT conditions system is a problem which can be solve with the MRPI 
algorithm. 
 The linear system which has to be solved at each iteration is: 
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By eliminating   result the linear system: 
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The solution after few iterations it is shown in Chart 1. 
 

 



 
Chart 1 After five iterations the solution is near to the wanted value 
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