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Abstract
In this paper is described how to efficiently solve a convex quadratic
programming problems using a generalization of the interior —point
method.
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The interior-point method finds a solution for the Karush-Kuhn-Tucker (KKT)
conditions of the quadratic problem, being a aternative to Newton method. In the
interior-point method at each iteration to compute the searching direction which leads to
solving alinear system.

M is a square, positive semidefinite matrix, M € R™" and aisavector ge R".
Theproblem isto find vectors z, x and s such that

e el la )
M 21 M 22 X q2 S
x>0,5>0, X's=0. 2
The name of the problem isrealizable interior-point method (M RPI):

Here M, and M ,, are square submatrices of M with dimensions n, and n,

respectively, and the vector ¢ is partitioned accordingly. The condition (1) is the
condition of infeasible, and X' s=0 is the condition of complementarity..



The redlizable interior-point method starts at point (z°,x°,s°), where
x°>0, s°>0, but possibly infeasible with respect the constraints (1). All iterates



(2, x*,s*) retain the positivy properties x* >0, s* >0, but the infeasibilities and
the complementary gap defined by:
p = (X)Ts I, ©)
are gradualy reduced to zo zero as k — oo . Each step of the algorithm is a modified
Newton step for the system of nonlinear equations defined feasibility conditions (1) and
the complementarity x,s =0,i=12,...,n,.

We can write this system as:

M,z+M,Xx+0q,
F(z,x,8)=| M, z+ M ,Xx-s+q, |=0, 4
XS
where we have used the notation
X =diag(X, X,,..., X, ), S=diag(s,,s,,....S, ) -

The agorithm has the foll owing form:

Given: (z°,x°,8°%), with x° >0,s° > 0.

for k=012,...
- Forsome o, € (0) solve:
M, M, 0][Az —rf
M, M, -1 AX|= _rzk ®)

0 s XY||as| |-X*S‘e+o.u.e
toobtain (AZ,Ax, As*) , where
rlk = Mllzk + Mlzxk 05
r¥ =M, z"+M,x* -s“+q,,

e=(L...0),
- s
(20, XK §) = (¢ X5, 8%) + @, (AZS, AXS, ASY) ©)
for some ¢, € (0,1] that retains (X", s***) > 0.
repeat

Note that (5) differs from the pure Newton step for (4) only because of the term
o1 on right-hand side. This term plays a stabilizing role, ensuring that the agorithm
converges steadily to a solution (1)-(2). The only two parameters to choose in a gorithm
arethescaars o, and «, , .The convergence anaysis leaves the choice of o, reatively
unfettered ( it is often confined to the range [o,0.8], whereo is a fixed parameter,

typically o =10°) but a, isrequired to satisfy the following conditions.



a) Theratios ”rlkH/ w, and ”r;”/ 1, should decrease monotonically with k .
b) xs,i=212,...,n, should remain bounded away from zero for dl i andall k.
c) u, should decrease at each iterate.
In practica implementations of algorithm, «, often is chosen via the following

simple heuristic. First weset ¢, to be the supremum of the following set:

foe (011](2, X, 8*) + a(AZ, AX¥, AS*) > O} . @
Then we set
a, =min(1,0.995 % ™). 8

The mgjor operation to be performed at each step of algorithm is the solution of
the linear system (5). The matrix in this system obviously has alot of structure due to the

presence of the zero blocks and the diagona components |,S* and X k. Additi onaly,

the matrix M is sparse in most cases of practical interest, induding our motivating
problem (1) , so sparse matrix factorizations are caled for.
Thefirst step in solving (5) isto eliminatethe As component. Since the diagonal

dements of X* are positive we can rearrange the last block in (5) to obtain
As=(X*)H(=X*S'e+ o p 8- SAX) = —s + (X*) (o p.e— SKAXY).
By substituting into the first two rowsin (5), we obtain:

M, M,, Az]| —rf ©
My My, +(X9)HS" J[ Ax -5, -5 +o (X ) "e .
In most cases, some of the partitions M,,,M,,M,,,M,, are zero or diagonal

or have some other simple structure, so further reduction of the system (9) is usualy
possible. This phenomenon happens, for instance, when (1), (2) is derived from a linear
or quadratic program.

We now show how convex quadratic programming problems can be expressed inthe
form (1), (2) and solved via agorithm MRPI. We consider the following general convex
quadratic program:

mzin% 2'Qz+c'z (10)
Hz=h,

Gz<g,

where Q isa symmetric positive semidefinite matrix.

The KKT conditions for this system are;

Qz+H¢+G"A=—c, (1)
Hz=h,

Gz+t=g,

t'A=0,

t>0,A>0.



The following identifications confirm that the system (11) can be expressed in the form

Q HT GT
: M, = M, = M, =[-G 0/M, =0
1), (2 i {_H O} 12 {0} 2=[-G 0M,=0,

Cc
ql: h ’qzzg,

z
ze{g},xek,set.

Thereduced form (9) of the linear system to be solved at each iteration of algorithmis
Q HT G’ Az —rk
-H 0 0 AC |= —rk , (12)
-G 0 (AT AL -1t 4o, () e
where p, = (t*)"2*/m, mis a number of inequality constraints in (10). It is customary

to multiply the last two block rows in (12) by -1, so that the coefficient matrix is
symmetric indefinite

[Q HT G’ Az —rk
H 0 0 AC |= rk . (13)
G 0 —(A)'T| A |rf+t—op () "e
Since (A*)™*T* isdiagonal with positive diagona elements, we can diminate A from
(13) to abtain an even more compact form:

[Q+GTAY TG HTHAZ}Z{— rk+G’ [Ak(l'k)‘lrgk + A —Gkuk(Tk)'leq 14)

k

H 0 ||AC ry
EXAMPLE
We consider the problem with the following transfer function:

0.0011
H(S) = 4 3 2
s” +0.3466s” + 0.1155s° + 0.0083s + 0.0001

with the poles: -0.0158, -0.0718 si -0.1295 + 0.2736i.
For transfer function H(s) results the following standard realisation:

0 1 0 0 0 0.0011
0 0 1 0 0 0
A = ] b = ’ C= L
0 0 0 1 0 0
—0.0001 -0.0083 -0.1155 -0.3466 1 0

coresponding to system:



X = Ax+bu

y=c'x
with the performance criterion
i-1 u?,
2

To obtain the discret modd we calculate the matrix @ and I" with the sampling
period T=2s.

1 000 0 1 0 0
AT 0100 0 0 1 0
d=e" = +AT = +2 ,
0010 0 0 0 1
0 001 —0.0001 -0.0083 -0.1155 -0.3466
1 2 0 0
0 1 2 0
O = ,
0 0 1 2
—-0.0002 -0.0166 -0.1310 0.3068
[ p 2p 0 0 0
P 2 0 2 0 0
T =[e*bdp= | b g dp
o o 0 0 p 2p 0
|—0.0002p -0.0166p -0.1310p 0.3068p || 1
0 0
B JZ. 0 dp = 0
ol 2p 4
1 0.3068p 0.6136
Then the discrete model of problem becomes:
1 2 0 0 0
x(k +1) 0 ! 2 0 x(k) 0 u(k)
+1 = + ,
0 0 1 2 4
—0.0002 -0.0166 -—0.1310 0.3068 0.6136

y(k)=[0 0 0 0.0011]x(k) ,
with the performance criterion:

1N—l
J=2>u(k).
2i%

The command is restricted with:



1 N
—Zu (k) <0.007 .
2N (=

Because the matrix (I ®I') is nonsi ngular we can formulate the equivalent quadratic
programming probl em. We define the vectors and matrix as below:

U, Yo [— DX, | 0
X Xo 0 0
u, A 0 0
Z = : v L= X | h1: : ) h2: e
Xy 1 : 0 0
uN—l yN—l O O
L Xy | | Xn1 | . 0 | 10]
r -1 I -c
o T -1 I -c
H,= JH, = :
(OJE B I —-c
S ERE N
z, 0 H, h,
| _
0
I (5 0
N N
I
L O_
[ ] [0.007 * N ]|
0 0.007 = N
[ ~ 0.007 = N
G= 0 , G{G 0}, g= :
00 0.007 = N
[ 0.007 = N
| 0] 10.007 * N |

Then, the discrete moded is equivalent with the following quadrati c problem:



N
mZII’]EZ Qz
Hz=h
Gz<g.
The KKT conditions for this problem are:
Qz+H'¢+G"A=0,
Hz=h,
Gz+t=g,
t>0,1>0, t'A=0,
and the following substitutions:

Q HT GT
Mll:|:_H 0 y My, = 0 ) |\/|21=[—G 0]1 M, =0,

= 0 = Z< z XA, S«t
ql_h’ qZ_g’ é,’ l y

shows that the KKT conditions system is a problem which can be solve with the MRPI
algorithm.
Thelinear system which hasto be solved at each iteration is:

Q HT G' Az —rk
-H 0 0 AS | = —rk :
-G 0 (A)TH|Ar] -1 -t +ou(A) e

By diminating A4 result the linear system:
Q+GTAN(T)*G HT][AZ]_[-rf+GT[A (T )+ 2 ~ o, (T¥) e
H 0 || AC rk
The solution after few iterationsit is shownin Chart 1.

Step 1

(] 200 400

timel=eac)



Step 4

1 1
1] 200 400
timesec)
Chart 1 After five iterations the solution is near to the wanted value
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