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Abstract

We prove that some special functions which are non-convex (from the classical viewpoint)
may be considered generalized convex, with respect to some properly choosed linear connec-
tions. This behaviour provides support to conjecture that this is true for any differentiable
function, as far as none of its critical points is a maximum one.
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1 Introduction

In order to decide which local extremum points are global ones, classical optimization theory
usually uses convexity criteria. In the Euclidean setting (i.e. for real valued functions defined
on subsets of Rn), the true essence of convexity (which is an affine property) is hidden by and
mixed with metric properties. Considering generalized convexity on Riemannian manifolds (as in
[5]) increases the degree of generality; many functions which are not (classically) convex become
convex with respect to some properly choosed Riemannian metrics (the characteristic property
along segment lines is replaced by the same property along geodesic paths).

In [1], [2] we extended the generalized convexity of functions, in the Affine differential setting:
the Hessian operator is constructed by using an arbitrary linear connection (instead of the Levi-
Civita one) and the geodesic links are replaced by auto-parallel curves links. Two natural questions
arrise:

1. given a linear connection, do there exist smooth functions which are generalized convex with
respect to it ?

2. given a smooth function, do there exist linear connections which ”make” it generalized
convex?

Partial answers to both problems were provided in [2]; in particular, for the Rosenbrock banana
function, we found an infinite family of linear connections with respect to whom the respective
function is (generalized) convex (see §2).

In this paper, we expose the main affine differential tools for generalized convexity (§2). Next,
we consider several examples of non-convex (from the classical theory viewpoint) functions and
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find linear connections with respect to whom the respective functions become generalized convex
(§3).

We prove that every differentiable function on a differentiable manifold, with one global mini-
mum point, is generalized convex, with respect to some properly choosed linear connection (§4).

Finally, we give an example to support the conjecture that the previous result is true also for
functions with an infinity of critical points, provided none of them is a maximum one (§5).

2 Generalized convexity in Affine differential geometry

Consider a differentiable manifold M and F(M) the algebra of the real valued differentiable (i.e.
smooth) functions on M . Denote by X (M) the F(M)-module of vector fields on M and by C(M)
the set of linear connections on M . We recall that a linear connection ∇ ∈ C(M) is an operator
from C(M)× C(M) to C(M), F(M)-linear in the first argument, R-linear in the second argument
and, for each function f ∈ F(M) and for each vector fields X, Y ∈ X (M), we have

∇XfY = f∇XY + df(X)Y (1)

Each linear connection ∇ defines an affine differentiable structure on M . For f ∈ F(M), the
Hessian operator with respect to ∇ is a (0,2)-tensor field, defined by

Hf (X, Y ) = (∇Xdf)(Y ) (2)

We say f ∈ F(M) is ∇-convex (respectively ∇-strictly convex) if its Hessian Hf is semi-
positively defined (respectively positively defined).

Remarks 1. If ∇ is a linear connection on M , we denote by ∇t and ∇s the transposed
connection and the symmetric connection, respectively, associated to ∇ by the formulas ∇t

XY =
∇Y X + [X, Y ] a̧nd 2∇s = ∇+∇t.

Let f be a differentiable function on M . Then
(i) The Hessian of f with respect to ∇ is the transposed of the Hessian of f with respect to

∇t. The Hessian of f with respect to ∇s is the mean of the Hessians with respect to ∇ and ∇t.
(ii) The folowing assertions are equivalent:
a) f is ∇-convex (resp. strictly convex);
b) f is ∇t-convex (resp. strictly convex);
c) f is ∇s-convex (resp. strictly convex).
(iii) Hf (with respect to ∇) is symmetric if and only if the torsion of ∇ belongs to the kernel

of df ; that is, df(∇XY − ∇Y X − [X, Y ]) = 0, where X, Y ∈ X (M). (In particular, we recover
the known fact that, with respect to a symmetric linear connection, all Hessian operators are
symmetric).

(iv) In local coordinates (x1,...,xn), the components of a linear connection are differentiable
functions Γi

jk, i, j, k ∈ {1, ..., n}, given by

∇ ∂

∂xj

∂

∂xk
= Γi

jk

∂

∂xi

The Hessian of a differentiable function f writes

Hij = fij − Γk
ijfk
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where fk are the first order partial derivatives of f and fij are the second order partial derivatives
of f .

Notations 2. Fix a function f ∈ F(M). We denote by Cf (resp. Cs
f ) the set of linear

connections ∇ such that f is ∇-convex (respectively strictly convex).
Fix ∇ ∈ C(M). We denote by F∇ (resp. Fs

∇) the set of ∇-convex (resp. strictly convex)
functions.

Remarks 3. (i) All the previously defined sets are convex sets and differential (resp. affine
differential) invariants.

(ii) Obviously, F∇ is non-void. If Fs
∇ 6= ∅, then the manifold M admits a Hessian structure

(i.e. a Riemannian metric which is the Hessian of a differentiable function).
Examples 4. (i) With respect to the canonical connection ∇ of the Euclidean space Rn, F∇

contains all the C2-differentiable functions on Rn, convex from the classical view point.
(ii) The Rosenbrock banana function f : R2 → R is given by

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2

It is not a (classically) convex function; it becomes (generalized) convex, for example, with re-
spect to the (Levi Civita connection associated to the) Riemannian metric g = (4x2

1 + 1)(dx1)2 −
4x1dx1dx2 + (dx2)2 ([5]).

Moreover, it is easy to show there exists an infinite family of linear connections, whose compo-
nents are solutions of the linear equations system

aΓ1
11 + bΓ2

11 = 600x2
1 − 200x2 + 1− α2

aΓ1
22 + bΓ2

22 = 100− β2

aΓ1
12 + bΓ2

12 = −200x1 ±
√

α2β2 − γ2

where
a = 200x3

1 − 200x1x2 + x1 − 1 , b = 100x2 − 100x2
1

and α2, β2, γ2 are arbitrary positive (parameter) functions on M, such that the squared root has
sense.

Remark 5. (i) Let ∇ be a symmetric linear connection on M. Denote by R its curvature
(1,3)-tensor field, given by

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]

for every vector fields X,Y, Z ∈ X (M).
Then ([1]) F∇ contain nonconstant functions if and only if there exist a nonconstant function

f and a semi-positively defined (0,2)- tensor field α, such that

(1) df(R(X,Y )Z) = (∇Y α)(X, Z)− (∇Xα)(Y, Z)

for every vector fields X,Y, Z ∈ X (M). In particular, this implies

(2) df(∇XR(Y, Z)V +∇ZR(X, Y )V +∇Y R(Z, X)V ) = 0
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(ii) Let f be a regular function on a differentiable manifold M , endowed with a symmetric linear
connection ∇. Suppose the curvature of ∇ vanishes on a (Chevalley) distribution complementary
to Kerdf . Then, there exist ∇-convex functions on M .

In particular, this situation occurs on every locally Euclidean manifold.
(iii) Let f be a regular function on M . There exists ([5]) a linear connection ∇o such that f is

∇o-linear affine (i.e. Ho
f = 0). We choose ξ a (local) generator of the complementary distribution

of Kerdf , such that df(ξ < 0. Then Cf (resp. Cs
f ) is the set of all connections of the form

(3) ∇XY = ∇o
XY + A(X,Y ) + B(X, Y )ξ

where A ∈ T 1
2 (M), A(X, Y ) ∈ Kerdf ; and B ∈ T 0

2 (M) is semi-positively (resp. positively) defined
([1]).

In particular, consider (M, g) a Riemannian manifold. We may obtain a large family of linear
connections in Cf , by taking B(X, Y ) = b2g(X, Y ), where b is an arbitrary function on M . (With
slighty modified details we may obtain examples for Cs

f ).

3 Case studies

We consider several functions admitting only critical points which are global minimum ones. We
prove that their (possible) lack of convexity is only apparent, because they may be considered
convex in an appropriate differential affine geometry.

(i) First, let f1 : R2 → R be the function given by

f1(x, y) = x4 + y4 − 6(x3 + y3) + 14(x2 + y2)

As its graph shows below, f1 has a paraboloid-like shape (Fig.1). A direct computation proves f1

Figure 1: Graph of f1
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is convex (in a classical sense) and, obviously, has only one (global) minimum point (0,0).
(ii) We slighty modify the previous function to

f2(x, y) = x4 + y4 − 6(x3 + y3) + 12(x2 + y2)

This new function is no more (classically) convex, as a short calculation shows and as its
graph hints (Fig.2). However, the minimum point property remains the same as for f1. In global

Figure 2: Graph of f2

coordinates on R2, we find a linear connection ∇, with respect to which f2 is (affine differential)
strictly convex; the (only non-vanishing) connection components are:

Γ1
11 = −x , Γ2

22 = −y

The (only non-vanishing) components of the Hessian matrix of f2, with respect to ∇, are
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H11 = 4x4 − 18x3 + 36x2 − 36x + 24

H22 = 4y4 − 18y3 + 36y2 − 36y + 24

(the positivity of H follows from the positivity of these previous two functions).
(iii) The (classical) convexity loss becomes more evident for

f3(x, y) = x4 + y4 − 6.3(x3 + y3) + 12(x2 + y2)

whose graph has a bigger ”bump” at the right side (Fig.3). Of course, the (global) minimum point
property is stable with respect to these ”bumps”. With respect to the same connection ∇ as in (ii),

Figure 3: Graph of f3

the function f3 is also strictly convex. (Interestingly, when the ”bump” grows, as for 6.45 instead
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of 6.3, the perturbed function cannot be made generalized convex, anyhow we would choose the
linear connection; this situation occurs because the new function gets also local maximum points).

4 The main result

As the previous examples suggest, differentiable functions with only one minimum point are likely
to be ”made convex”, by choosing an appropriate linear connection. In fact, we may prove the
following result, which completes what was already known from the Remark 5,(iii) (i.e. in the case
of regular differentiable functions).

Theorem 6. Let f be a real valued differentiable function on a differentiable manifold M .Suppose
f has only a critical point, which is of minimum type. Then there exists a linear connection in Cf .

Proof. Let x0 ∈ M be the minimum point of f and let ∇1 ∈ C(M) be an arbitrary linear
connection. Since x0 is a critical point, the Hessian Hf in x0 does not depend on the choice of the
linear connection in C(M); so the positiveness of Hf in x0 implies f is ∇1-convex in a neighborhood
U of x0. If U = M , the theorem is proved.

If U is strictly contained in M , denote V the complement in M of the topological closure of U .
The restriction of f to the open set V is regular; hence, by the Remark 5, (iii) there exists a linear
connection ∇2 ∈ C(V ) such that (the restriction to V of ) f is ∇2-convex. Due to the (implicitely
supposed) paracompactness of the manifold M , there exist an open sub-covering {Wi}i of the open
covering {U, V } and a differentiable partition of unity {φi}i associated to it. Consider a family
{∇i}i of linear connections, with ∇i ∈ C(Wi), such that ∇i be the restriction of either ∇1 or ∇2.

The restriction of f to each set Wi is ∇i-convex. We define ∇ :=
∑

i φi∇i. First, we remark
that ∇ is a linear conection on M . This is due to the fact that the set of linear connections behaves
like an affine module over the ring of (germs of) functions.

Secondly, the function f is ∇-convex. Indeed, let remark that if ∇′ and ∇” are two linear
connections and h a differentiable function, then we may construct a new connection ∇ = h∇′ +
(1 − h)∇”. Consider another function α; then the Hessian of α with respect to ∇ writes H ′′′

α =
hH ′

α + (1 − h)Hα”. This proves that if, moreover, α is ∇′-convex and ∇”-convex, and if h takes
values in the interval [0,1], then α is also ∇′′′-convex.

As all the functions from the partition of unity have the previous property, it follows that the
function f is convex with respect with the new constructed connection ∇.

Combining the theorem with the Remark 5, (iii), we get the

Corollary. Let f be a real valued differentiable function on a differentiable manifold M .Suppose
f is regular or has only a critical point, which is of minimum type. Then there exists a linear
connection in Cf .

5 Other example

We may wonder if, in the hypothesis of Theorem 6, the uniqueness of the critical point is necessary
for the generalized convexity of the function f . As the following example shows, the respective
result seems true in a more general context, where several (eventualy an infinity of) critical points
exist (but none of them may be a maximum one !).
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Consider the differentiable function f4 : R2 → R, given by f4(x, y) = x2ey. This function is
not (classically) convex, because its (classical) Hessian is indefinite in the point (1,0).

Let ∇ be a linear connection, whose components (except some vanishing ones) are:

Γ1
21 = Γ1

12 = 1 , Γ2
11 ≤ 0 , Γ2

22 ≤ 0

A direct computation of the Hessian (with respect to ∇) shows that f4 is ∇-convex. In this case,
the choosen function has an infinity of minimum points (0, y), with y ∈ R, but no other critical
point. The shape of f4 may be seen below. (Even it is not visually obvious, the lack of classical
convexity follows as previously asserted).

Figure 4: Graph of f4
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[5] C. Udrişte, Convex functions and optimization methods on Riemannian manifolds, Kluwer
Acad. Publ., 1994

9


