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Abstract
The maxentropic reconstruction is a technique for finding an unknown probability

distribution from some known information. In this paper we obtain the maxentropic
reconstruction of some probability distributions from the knowledge of a prior dis-
tribution and of some lower and upper bounds for the mean values of some random
variables. For this we use the Csiszár’s I-projection theorems and the geometric pro-
gramming method. If some average values of the prior distribution are computed,
we obtain a refined form of our solution. Finally, we give several examples for this
approach.
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1 INTRODUCTION

The purpose of a maxentropic reconstruction is to estimate a positive function from in-
complete data. This technique has several useful applications in a variety of fields such as
astronomy [18], traffic distribution [26], X-ray crystallography [25], quantum mechanics
[10], noisy data [8], tomography [13] and applications of Markov chains [14, 23].

The problem of maxentropic reconstruction of a probability distribution with con-
straints expressed by mean values has played a central role in statistics. Let us consider
a random variable X. We are given only some partial information about the probability
distribution of X. Based to the maximum entropy principle, introduced by Jaynes [17]
and Kullback [19] we should choose the probability distribution that is consistent with
the given information but maximizes the entropy or minimizes the relative entropy. It
is well-known that by using this method some main probability distributions have been
reobtained [17, 19, 16, 9, 21, 22, 5, 15].

Borwein, Lewis, Limber and Noll [3, 2] present a variety of new entropy measures, a
duality theory and numerical results for maxentropic reconstruction of an unknown den-
sity function on the basis of certain measurements. Gzyl [11, 12] uses the maxentropic



reconstruction method for solving ill-posed linear inverse problems and for obtaining some
families of probability distributions. More recently, Bnouhachem and Liu [1] use an al-
ternating direction method for maxentropic reconstruction problems subject to simple
constraints sets.

In this paper, we extend the maxentropic reconstruction technique to find an unknown
continuous probability distribution from the knowledge of a prior distribution and of some
bounds for the mean values of some random variables. In Section 2 we define this problem
as an entropy optimization primal problem with linear inequality constraints. For solving
this problem, in Section 3 we apply the geometric programming method [6, 7, 20] to derive
a convex dual problem. By using the Csiszár’s I-projection theorems [4] we can show
some duality theorems. In Section 4 we derive a refined form of the dual problem when
some average values of the prior distribution are computed. In Section 5 we present three
particular cases, when the dual problem can be more simplified. Finally, we apply our
approach to obtain the power distribution and the Pareto distribution.

2 PROBLEM STATEMENT

Let (V,B(V ),mL) be a measure space, where V ⊆ R is an interval, B(V ) denotes the
Borel sets of V and mL denotes the Lebesque measure on the real line. Let us consider a
prior probability distribution ν on (V,B(V )) defined by the density function q : V → R,

q(x) ≥ 0, ∀x ∈ V,
∫

V
q(x)dx = 1.

Remark 1 The prior distribution ν may be given on the basis of some experiences or it
may be obtained from theoretical models.

We denote by M(V, ν) the set of all probability density functions p on (V,B(V ), mL) such
that the probability distribution µ defined by p is absolutely continuous with respect to
the prior distribution ν.

To formulate our problem, let fi, i ∈ {1, . . . , n}, be real continuous functions defined
on V , and let ci , i ∈ {1, . . . , n}, be real constants. Our problem consists of finding
continuous probability distributions µ on (V,B(V )) with density function p ∈ M(V, ν)
that are consistent with the following inequality constraints of mean values type

∫

V
p(x)fi(x)dx ≥ ci, ∀i ∈ {1, . . . , n},

where the functions fi and the constants ci, i ∈ {1, . . . , n}, are given.
For solving this problem, we apply the maxentropic reconstruction technique. Thus we

consider the following entropy optimization problem with linear inequality constraints

(P ) :
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min
p∈M(V,ν)

H(p; q) =
∫

V
p(x) ln

p(x)
q(x)

dx s.t.
∫

V
p(x)fi(x)dx ≥ ci, ∀i ∈ {1, . . . , n}.

We assume that the program (P ) is consistent and that
∫

V
q(x) exp(s|x|)dx < ∞, ∀s ∈ R. (2.1)



Remark 2 The objective function H(p; q) of program (P ) is the relative entropy of p with
respect to q (the cross-entropy of q with respect to p; the Kullback-Leibler number). This
function is a strictly convex function on p (see [15], for example) and hence it follows that
the program (P ) has an unique optimal solution.

3 DUALITY

Using the geometric programming method (see [6, 7, 20], for example), now we are ready
to define a convex dual problem for program (P ) as follows

(D) :
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max
λ∈Λ

G(λ) =
n

∑

i=1

λici − ln Z(λ) s.t.

∫

V
q(x)[fi(x)− ci] exp

[

n
∑

k=1

λkfk(x)

]

dx ≥ 0, ∀i ∈ {1, . . . , n},

λi ≥ 0, ∀i ∈ {1, . . . , n},

where Z(λ) =
∫

V
q(x) exp

[

n
∑

k=1

λkfk(x)

]

dx and Λ = {λ ∈ Rn | Z(λ) < ∞} .

Remark 3 The Hessian of the dual objective function G is negative definite (see [25]),
and then G is a strictly concave function. According to the Fenchel duality (see [24]), if
the dual program (D) has an interior feasible solution then the dual program (D) has also
an unique optimal solution. The assumption (2.1) ensures the differentiability of G.

Now we provide the following duality theorems.

Theorem 1 (weak duality) If p is a feasible solution of program (P ) and λ is a feasible
solution of program (D), then

H(p; q) ≥ G(λ). (3.1)

Moreover, the equality holds only if

p(x) =
q(x)
Z(λ)

exp

[

n
∑

k=1

λkfk(x)

]

, ∀x ∈ V. (3.2)

Proof: By the definitions of programs (P ) and (D) and using the Jensen’s inequality for
the concave function lnx we have

n
∑

i=1

λici −H(p; q) ≤ ln
∫

V
p(x)

q(x)
p(x)

exp

[

n
∑

i=1

λifi(x)

]

dx = lnZ(λ).

The inequality (3.1) is proved. Applying the equality part of Jensen’s inequality we obtain
that the inequality (3.1) becomes an equality only if

q(x)
p(x)

exp

[

n
∑

i=1

λifi(x)

]

= C, ∀x ∈ V,

C being a constant with respect to x. By the fact that
∫

V
p(x)dx = 1 we derive that

C = Z(λ), and hence the equality (3.2) is also proved. �



Theorem 2 (strong duality) If λ∗ is an optimal solution of dual program (D), then the
function p∗ defined by

p∗(x) =
q(x)

Z(λ∗)
exp

[

n
∑

k=1

λ∗kfk(x)

]

, ∀x ∈ V (3.3)

is the optimal solution of program (P ) and H(p∗; q) = G(λ∗).

Proof: Obviously,
∫

V
p∗(x)dx = 1, and for all i ∈ {1, . . . , n} we have

∫

V
p∗(x)fi(x)dx ≥ 1

Z(λ∗)

∫

V
q(x)ci exp

[

n
∑

k=1

λ∗kfk(x)

]

dx = ci.

Therefore p∗ is a feasible solution of program (P ). We shall show, by contradiction, that
for all i ∈ {1, . . . , n} the following equality holds

λ∗i

∫

V
q(x)[fi(x)− ci] exp

[

n
∑

k=1

λ∗kfk(x)

]

dx = 0. (3.4)

Indeed, if λ∗i > 0 and
∫

V
q(x)[fi(x)−ci] exp

[

n
∑

k=1

λ∗kfk(x)

]

dx > 0, then ∂iG(λ∗) = 0 and it

follows that
∫

V
q(x)[fi(x)− ci] exp

[

n
∑

k=1

λ∗kfk(x)

]

dx = 0, contradiction. Thus (3.4) holds.

From (3.3) and (3.4) we obtain that

H(p∗; q) =
n

∑

i=1

λ∗i

∫

V
p∗(x)fi(x)dx− lnZ(λ∗)

∫

V
p∗(x)dx = G(λ∗).

On the other hand, if p is an arbitrary feasible solution of program (P ), in the same
manner as above we obtain that

∫

V
p(x) ln

p∗(x)
q(x)

dx =
n

∑

i=1

λ∗i

∫

V
p(x)fi(x)dx− ln Z(λ∗)

∫

V
p(x)dx ≥ G(λ∗).

It follows that H(p∗; q) ≤
∫

V
p(x) ln

p∗(x)
q(x)

dx, for every feasible solution p of program (P ).

Therefore, by Csiszár characterization of minimum relative entropy [4], we conclude that
p∗ is the optimal solution of program (P ). �

Remark 4 Using the equivalence
∫

V
p(x)fi(x)dx = ci if and only if

∫

V
p(x)fi(x)dx ≥ ci

and
∫

V
p(x)(−fi(x))dx ≥ −ci, we regain the duality results concerning minimum relative

entropy with linear equality constraints (see Ihara [15]). In this particular case, we can
remove all the constraints of the dual program (D), these constraints being satisfied by the
dual optimal solution since ∂iG(λ∗) = 0, ∀i ∈ {1, . . . , n}. Therefore, in this case the dual
program (D) will be an unconstrained convex maximization problem.



4 A REFINED FORM OF THE DUAL PROGRAM

If the average values
∫

V
q(x)fi(x)dx, i ∈ {1, . . . , n} of the prior probability distribution

are known, then we can obtain a simplified form of the dual program (D). Denote

I1 =
{

i ∈ {1, . . . , n} |
∫

V
q(x)fi(x)dx ≥ ci

}

, I0 = {1, . . . , n} \ I1.

The dual program (D) has now the following simplified form

(D0) :

∣
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∣

∣

∣

max
λ∈Λ0

G0(λ) =
∑

i∈I0

λici − ln Z0(λ) s.t.

∫

V
q(x)[fi(x)− ci] exp





∑

k∈I0

λkfk(x)



 dx ≥ 0, ∀i ∈ I1,

λi ≥ 0, ∀i ∈ I0,

where Z0(λ) =
∫

V
q(x) exp





∑

k∈I0

λkfk(x)



 dx and Λ0 =
{

λ ∈ R|I0| | Z0(λ) < ∞
}

.

By changing (D) into (D0) we reduce both the number of variables and the number
of constraints of dual program. Similarly to Theorem 1 it can prove the following duality
theorem.

Theorem 3 (weak duality) If p is a feasible solution of program (P ) and λ is a feasible
solution of program (D0), then H(p; q) ≥ G0(λ).

The equality holds only if p(x) =
q(x)
Z0(λ)

exp





∑

k∈I0

λkfk(x)



 , ∀x ∈ V.

Theorem 4 (strong duality) If λ∗ is an optimal interior solution of dual program (D0),
then the function p∗ defined by

p∗(x) =
q(x)

Z0(λ∗)
exp





∑

k∈I0

λ∗kfk(x)



 , ∀x ∈ V

is the optimal solution of program (P ) and H(p∗; q) = G0(λ∗).

Proof: Obviously,
∫

V
p∗(x)dx = 1. For every i ∈ I0, λ∗ is an interior dual feasible

solution with respect to the component λi, and hence ∂iG0(λ∗) = 0. It follows that
∫

V
p∗(x)fi(x)dx = ci, ∀i ∈ I0.

For every i ∈ I1, using the definition of program (D0) we obtain that

∫

V
p∗(x)fi(x)dx ≥ 1

Z0(λ∗)

∫

V
q(x)ci exp





∑

k∈I0

λ∗kfk(x)



 dx = ci.

Thus p∗ is a feasible solution of program (P ). In the same way as in the proof of Theorem

2 we derive that H(p∗; q) = G0(λ∗) ≤
∫

V
p(x) ln

p∗(x)
q(x)

dx, for every feasible solution p of

program (P ) and we conclude that p∗ is the optimal solution of program (P ). �



5 SOME SPECIAL CASES AND EXAMPLES

Case 1 If I1 = {1, . . . , n}, then it follows that the prior probability density function q is
a feasible solution for primal program (P ). Using the following well-known property of
relative entropy (see [15], for example)

H(p; q) ≥ 0 = H(q; q), ∀p ∈M(V, ν),

we derive that the prior probability density function q is the optimal solution of program
(P ). In this case the optimal solution of program (D) is λ∗ = 0.

Case 2 If I1 = ∅, then the dual program (D0) has the following form

(D0) :

∣

∣

∣

∣

∣

∣

∣

max
λ∈Λ

G(λ) =
n

∑

i=1

λici − ln Z(λ) s.t.

λi ≥ 0, ∀i ∈ {1, . . . , n}.

Case 3 If I1 = {1, . . . , n} \ {k}, where k ∈ {1, . . . , n}, then the dual program (D0) has
the following form

(D0) :

∣

∣

∣

∣

∣

∣

∣

max
λ∈Λ0

G0(λ) = λck − ln
∫

V
q(x) exp[λfk(x)]dx s.t.

∫

V
q(x)[fi(x)− ci] exp[λfk(x)]dx ≥ 0, ∀i ∈ {1, . . . , n} \ {k},

where Λ0 =
{

λ ∈ R |
∫

V
q(x) exp[λfk(x)]dx < ∞

}

.

In this case we can remove the nonnegativity restriction λ ≥ 0 of the dual program,
this constraint being satisfied by the dual optimal solution.

Example 1 Let V = [0, θ] and consider as a prior distribution the power distribution ν
of parameters α and θ, with the density function

q(x) = αθ−αxα−1, ∀x ∈ [0, θ],

α and θ being positive real numbers. We remark that Eν [lnX] = − 1
α + ln θ.

Consider the maxentropic reconstruction of probability distributions µ on (V,B(V ))
with density function p ∈ M(V, ν) that are consistent with the following inequality con-
straints of mean values type

−1
a

+ ln θ ≤
∫ θ

0
p(x) lnxdx ≤ −1

b
+ ln θ,

where the real constants a, b are given, 0 < a ≤ b. Now, the primal optimization problem
(P ) has the following form

(P1) :

∣

∣

∣

∣

∣

∣

∣

∣

min
p∈M(V,ν)

H(p; q) =
∫ θ

0
p(x) ln

p(x)
q(x)

dx s.t.
∫ θ

0
p(x) lnxdx ≥ −1

a
+ ln θ,

∫ θ

0
p(x)(− lnx)dx ≥ 1

b
− ln θ.



According to the above results, we have three situations.

Case i) If α ∈ [a, b], then −1
a

+ ln θ ≤
∫ θ

0
q(x) ln xdx ≤ −1

b
+ ln θ, and hence the

optimal solution of problem (P1) is p∗ = q.

Case ii) If α < a, then
∫ θ

0
q(x) ln xdx < −1

a
+ ln θ and

∫ θ

0
q(x)(− ln x)dx ≥ 1

b
− ln θ.

Therefore we obtain the following dual problem

(D1) : max
λ∈Λ1

G1(λ) = −λ
a

+ ln
α + λ

α
,

where Λ1 = (−α,∞). Obviously, this dual has the optimal solution λ∗ = a−α, and hence
the primal problem (P1) has the optimal solution

p∗(x) =
q(x) exp(λ∗ ln x)

∫ θ

0
q(t) exp(λ∗ ln t)dt

= aθ−axa−1, ∀x ∈ [0, θ],

i.e. the density of the power distribution of parameters a and θ.
Case iii) If α > b, then in the same manner as in the previous case we obtain the dual

problem ( ˜D1) : max
λ∈(−∞,α)

˜G1(λ) =
λ
b

+ ln
α− λ

α
,

with the optimal solution λ∗ = α − b, and the problem (P1) has as optimal solution the
density of the power distribution of parameters b and θ.

Example 2 Let V = [θ,∞) and consider as a prior distribution the Pareto distribution
ν of parameters (α, θ), with the density function

q(x) = αθαx−α−1, ∀x ∈ [θ,∞),

α and θ being positive real numbers. We remark that Eν [ln X] = 1
α + ln θ.

Consider the maxentropic reconstruction of probability distributions µ on (V,B(V ))
with density function p ∈ M(V, ν) that are consistent with the following inequality con-
straints of mean values type

1
a

+ ln θ ≤
∫ ∞

θ
p(x) ln xdx ≤ 1

b
+ ln θ,

where the real constants a, b are given, 0 < b ≤ a. Similarly to Example 1 we can obtain
that the maxentropic distribution µ∗ is also a Pareto distribution of parameters (α, θ),
(a, θ), and (b, θ), accordingly as α ∈ [b, a], α > a, and α < b, respectively.

Remark 5 For equality constraints, the power and the Pareto distributions can be directly
obtained by using the maximum entropy principle (see [22]).
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