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Abstract  
In this paper an algorithm that uses sequential quadratic programming 
techniques in conjunction with a two-parameter penalty function is 
described. It is considered the nonlinear programming problem with 
interval constraints (NLP) 

    nRxbxcaxf  ,min . 

The approach taken is to replace the NLP by the more tractable problem 
of minimizing a non-differentiable penalty function chosen so that the 
solutions of the NLP are also solutions of the penalty function problem. 
The exact penalty function used in this paper is based on the infinity 
norm of the constraints violations. 

 
 

1. PRELIMINARIES  
The nonlinear programming problem considered is of the form: 
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Assumption. At each local minimizer of the nonlinear programming problem (1)  an 
appropriate constraint qualification is assumed to hold, thereby ensuring that any optimal 
point x  of the nonlinear programming problem (1) satisfies the following Karush-Kuhn-
Tucker conditions: there exists a vector of Lagrange multipliers 
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2. THE PENALTY FUNCTION PROBLEM 

The nonlinear programming problem is not solved directly; instead a non-
differentiable exact penalty function   is minimized, where the exact penalty function is 
constructed so that local minimizers of the nonlinear programming problem are also local 
minimizers of the penalty function . The penalty function is 

(3)        ,
2

1 2 xxxfx   with 0,0   where the degree of 

infeasibility  x  is defined as 

(4)         ,; max
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mi

 and 

     iiii bxcbxc   ;0max . 

The penalty function   may be viewed as a hybrid of a quadratic penalty 
function based on the infinity norm and the single parameter exact penalty function of [5], 
[6] and [9]. Clearly   is continuous  nRx , but it is usually not differentiable for 
some .x  However, the directional derivative  
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exists for any ., nRpx   The definition (4) imply that 
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Definition 2.1 For fixed values of 0  and 0 , a point x  is a critical point of   

if and only if for all nRp  the directional derivative   xDp  is non-negative. 

Definition 2.2 The solution set of the penalty function problem with fixed values for 
0,0   is defined as the set of critical points of .  

Theorem 2.1 Let x  be an optimal solution of the nonlinear programming problem (1) at 

which Karush-Kuhn-Tucker conditions hold and let   mm RR  
21 ,  be a vector 

of Lagrange multipliers satisfying these conditions for which  
121 ,   is minimal. If 

 
121 ,   then x is a critical point of  . Conversely, if x is both feasible and a 

critical point of   for some 0,0  , then x  is a Karush-Kuhn-Tucker point of the 
nonlinear programming problem (1). 
 
3. DETERMINING DESCENT DIRECTIONS 

In order to determine a suitable descent direction at the k-th iterate, a continuous 
piecewise quadratic approximation to   near the current point is defined: 
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and kH  is positive definite. Clearly k  is strictly convex in p, and the level set 

    0kkn pRp   is bounded for all 0,0  . Thus, k  has an unique 

global minimizer kp  which also solves the quadratic programming problem: 
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Theorem 3.1 Let  kkp ,  be the unique solution of the quadratic programming 

problem, with kH  positive definite. Let  kk
21 ,  denote an optimal Lagrange multiplier 

vector, which need not be unique, for which  
121 , kk   is least. If  
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then  kp  is a descent direction for   at .kx  
 
The following algorithm is based on the results of the preceding sections.  

 
4. EXACT PENALTY FUNCTION ALGORITHM.  

For purposes of ensuring convergence, the following bound is imposed at each 
iteration: 

.bound
k Sp 


 

 
4.1 INITIALIZATION 

1k           11               11            IH 1  

                   510           02.0       810  

                  1010boundS     1cross       100 cap  

                  2.11 k            5.12 k        2.13 k         44 k . 

 
4.2 UPDATE H AND THE PENALTY PARAMETERS. 

This step is omitted from the first iteration. H is updated using The Broyden-
Fletcher-Goldfarb-Shanno update provided this maintains positive definiteness; otherwise 
H is not updated. The penalty parameters are updated as follows: 
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4.3 SOLVE THE (PK) PROBLEM 

If  cap
k   then the capping constraint k is also imposed. Then this 

problem is solved. If the capping constraint is not active at the  kP �s solution, then the 
algorithm proceeds directly to Step 4. Otherwise, the penalty parameters are updated as 

described in Step 2, except that 
1

k is replaced by , kkk  where   is the 

Lagrange multiplier of the capping constraint. The  kP  problem is then solved again. 

 
4.4 ATTEMPT THE PROPOSED STEP 

If  i          kkkkkk ppxx  0  

 ii  either the penalty parameters were not altered in Step 3 or the inequality 

   kkk xpx   is satisfied, then the proposed step is accepted and the algorithm 
proceeds to step 7. Otherwise, the execution continues at the next step. 
 
 



4.5 CALCULATE THE MARATOS EFFECT CORRECTION VECTOR 
Solve the following quadratic problem for the second order correction :kt  
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where T is the set of indices of the constraints active at the  kP �s solution in Step 3. If 

22
 kk pt   then set .0kt  

 
4.6 ARC SEARCH 

Consider successive values of the sequence ,...8
1,4

1,2
1,1  as trial values of 

.  If  0kt , then omit the first member of the sequence. Accept the first trial value 
which satisfies  
 i           kkkkkk pqxx  0  

where   kkk tpq 2  

 ii  If the penalty parameters were altered in Step 3, then the step  kq  is also required 

to satisfy the condition    .kkk qx   After a satisfactory value of    has been 

found, set  .1  kkk qxx  

 
4.7 CHECK THE STOPPING CONDITIONS 

The algorithm halts if either the length of the previous step  
2

1kk xx  or 

both of the following conditions hold: 
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incremented, and the algorithm proceeds to Step 2. 
The convergence properties of the algorithm are summarized in the following: 

Theorem 4.1 Assume that  
 the sequence of iterates  kkx  is bounded in norm; 

 the sequence of matrices  kkH  generated is bounded in norm; 

 the penalty parameters    ,  are altered only a finite number of times. 

Then, every cluster point of the sequence of iterates  kkx  generated by the 

algorithm is a critical point of    ,;x  where   ,  are at their final values. 
 



5. CONCLUDING REMARKS 
The purpose of this paper is to show that there are some advantages to be gained 

from using a two-parameter exact penalty function based on the infinity norm of 
constraint violations. This function has an advantage over one-norm based exact penalty 
function in that only the gradients of the most violated constraints need be calculated in 
order to find a search direction: for one-norm exact penalty functions, the gradients of all 
active and violated constraints may be required.  

The algorithm generates convergent sequences under mild conditions; it is 
effective in practice and the use of the second penalty parameter significantly reduces the 
effort required to solve constraint nonlinear programs. 
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