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Abstract

In this paper an algorithm that uses sequential quadratic programming
techniques in conjunction with a two-parameter penalty function is
described. It is consdered the nonlinear programming problem with
interval constraints (NLP)

{minf(x)a<c(x)<bxeR}.

The approach taken is to replace the NLP by the more tractable problem
of minimizing a non-differentiable penalty function chosen so that the
solutions of the NLP are also solutions of the penalty function problem.
The exact penalty function used in this paper is based on the infinity
norm of the constraints violations.

1. PRELIMINARIES
The nonlinear programming problem considered is of the form:

min f(x)
(1) Ja<c(x)<b
xe RN
where f:R"—> R c:R" > R™,c= (cl,...,cm) are continuously differentiable

funtionsand a=(a,,a,,...a,) € R", b=(b,b,,.,b,) €R™

Assumption. At each loca minimizer of the nonlinear programming problem (1) an
appropriate constraint qualification is assumed to hold, thereby ensuring that any optimal
point X* of the nonlinear programming problem (1) satisfies the foll owing Karush-Kuhn-

Tucker  conditions: there exists a vector of Lagrange multipliers
A=A, 0 )e R™x R™, where & = (A, A% s A ) € R™,



A% = (Mg, K yeens Ay ) € R™ sich that
G (x)-b <0; 25 20; 4 -(c(x*)-b)=0; i=1m
(2 1a, —c;(x )SO; As 205 A5 -\ —ci(x ):O i=1m
\%i (x )+ Zmllh Ve, (x*)+ Zmllzl (—VcI X )):O
i=1 i=1

2. THE PENALTY FUNCTION PROBLEM

The nonlinear programming problem is not solved directly; instead a non-
differentiabl e exact penalty function @ is minimized, where the exact pendty function is
constructed so that local minimizers of the nonlinear programming problem are aso loca
mi nimizers of the penalty function® . The penalty function is

(3) @(x)= f(x)+p-9(x)+%v-92(x), with u>0,v>0 where the degree of

infeasibility 8(X) is defined as
(@) 0(x) = max{[c(x)-b];[a ¢ (x)]. }, and
[c.(x)-b], = max{0;c;(x)- b }.

The pendty function @ may be viewed as a hybrid of a quadratic penalty
function based on the infinity norm and the singl e parameter exact pendty function of [5],

[6] and [9]. Clearly © is continuous VXe R", but it is usually not differentiable for

some X. However, the directional derivative

D.0(x) - Iime(x+oc- p)-0(x)
o0 o

VX, pe R"

existsfor any X, p € R". The definition (4) imply that

iely(x) iel,(x) Ve (X)) }

max{max p'Ve (x); max pT(-
if 8(x)>0, 1(x)= 2

D,6(x) = maX{irg%( p'Ve (), ; max(p' (- Ve (x)) }
if 8(x)=0,1(x)= &

0 ifl(x)=0

where
{'(X)= 1 (x) 1, (),
1,(x) = {i|Ci (x)-b = O(X)}, 1,(x)= {i|ai —c,(x)= O(X)}.



Definition 2.1 For fixed values of x>0 and v >0, apoint X" isacritica point of ®
if andonly if for all p e R" thedirectional derivative DpCD(x*) is non-negative.

Definition 2.2 The solution set of the penalty function problem with fixed values for
u>0,v > 0 isdefined as the set of critical points of ®.

Theorem 2.1 Let X" be an optimal solution of the nonlinear programming problem (1) at
which Karush-Kuhn-Tucker conditions hold and let " = (X’“l,k*z) € R™ x R™ be avector

of Lagrange multipliers satisfying these conditions for which ||(kj,k*2)
n> ”(7‘*1’7‘*2)

critical point of @ for some pu > 0,v > 0, then X isaKarush-Kuhn-Tucker point of the
nonlinear programming problem (1).

lis minimd. If

lthenx*is a critical point of @ . Conversdy, if X‘is both feasible and a

3. DETERMINING DESCENT DIRECTIONS
In order to determine a suitable descent direction at the k-th iterate, a continuous
piecewise quadrati c approximation to @ near the current point is defined:

v (p)=f(x¥)+ pT - Vi (xk)+% PT-H*. p+puk -C(p)%vk -¢2(p), where

t(p)= riggtx{o;ci (x)=b, + pTVe,(x);a — ¢ (x*)- pTve (x*)}
and H¥ is positive definite. Clearly w* is srictly convex in p, and the level set
{pe R”|wk(p)§\uk(0)} is bounded for al w>0,v>0. Thus, y* has an unique
global minimizer p* which aso solves the quadratic programming problem:

i T k 1 T, k. k. E k ,r2
min p Vi (x )+2p H . p+p Q+Lv ¢
(P¥) c(x)-b +p'Ve (xk)<g, i=1m
a, —¢(x<)+ pT(-ve (x<)<¢, i=1m

£>0.

Theorem 3.1 Let (pk,Qk) be the unique solution of the quadratic programming

problem, with H¥ positive definite. Let (X‘;sz) denote an optimal Lagrange multiplier
vector, which need not be unique, for which ||(k‘1k‘; )|l isleast. If

p* =0
g <0(x*)
A+ vo(x<)> ||(xkl,xk2)||l



then p* isadescent direction for @ at x.

The following algorithm is based on the results of the preceding sections.

4. EXACT PENALTY FUNCTION ALGORITHM.
For purposes of ensuring convergence, the following bound is imposed at each
iteration:

"pk”Oc < Spund -
41 INITIALIZATION
k=1 -1 vi=1 H=|
£ =10 0=002 5=10°
S =10° 0,0 =1 0, =100
k=12 k=15 k=12 k=4

42 UPDATE H AND THE PENALTY PARAMETERS.

This step is omitted from the first iteration. H is updated using The Broyden-
Fletcher-Gol dfarb-Shanno update provided this maintai ns positive definiteness; otherwise
H is not updated. The penalty parameters are updated as follows:

(i) If 0K <0, . and u* < kl||kk||l then pkt = k2||kk||l, vk = yk,
k4||kk||l—uk
_T_

Cross

(i) 1f 0% >0, and pk +v¥Ok < k3||kk||l then pk+t = pk, vkt

Ccross

4.3 SOLVE THE (P) PROBLEM
If 6% >0, then the capping constraint { <0is also imposed. Then this

problem is solved. If the capping constraint is not active at the (Pk ) ’s solution, then the
algorithm proceeds directly to Step 4. Otherwise, the penalty parameters are updated as
described in Step 2, except that ||7J‘||lis replaced by p* +vk0X +[€|, where £ is the

Lagrange multiplier of the capping constraint. The (Pk) problem is then solved again.

44 ATTEMPT THE PROPOSED STEP
If (i) ©(x<) = D(x* + p*) = p[¥*(0) - ¥ (p* ]
(i i) either the penalty parameters were not altered in Step 3 or the inequality
0(x* + p* ) < e(xk) is satisfied, then the proposed step is accepted and the algorithm
proceeds to step 7. Otherwise, the execution continues at the next step.



45 CALCULATE THE MARATOS EFFECT CORRECTION VECTOR
Solve the following quadratic problem for the second order correction t* :

. 2
min| ¢,

¢ (x*+ p*)-b +t"vc,(x¥)> 0
a —c (x* + pk)—tTVci (xk)z 0, VieT

where T isthe set of indices of the constraints active at the (Pk) ’s solutionin Step 3. If
|4, 2]p¥], tenset v =0,

4.6 ARC SEARCH

Consider successive values of the sequence l%%% as trial values of
a. If t< =0, then omit the first member of the sequence. Accept the first trial vaue
which satisfies
(i) ®(x)-@(x + (o)) = pal[¥*(0)- ¥ (p)]
where g*(at) = ap* + o ’t*
(ii) If the pendlty parameters were altered in Step 3, then the step g* (a) isalso required
to satisfy the condition O(x* + g*(a)) < 0. After asatisfactory value of o has been
found, set X* = x + (o).

4.7 CHECK THE STOPPING CONDITIONS
The algorithm halts if either the length of the previous step ||xk - xk‘l”2 <3 or

both of the following conditions hol d:
(i) ok <e
<g

(i) [V (x*)+ D ave (xk) - > ak ve, (xk*

ieAK jeBk
where  A* = {I| ‘Ci (x¥)-b, |<10‘5},Bk = {j| ‘aj -C, (x<)< 8}. Otherwise, k is
incremented, and the a gorithm proceeds to Step 2.

The convergence properties of the algorithm are summarized in the foll owing:
Theorem 4.1 Assume that

o the sequence of iterates (Xk )k is bounded in norm;

¢ the sequence of matrices (H k )k generated is bounded in norm;
o the penalty parameters ., v arealtered only a finite number of times.

Then, every cluster point of the sequence of iterates (Xk )k generated by the
algorithmis acritical point of <I)(X;u,v) where pu, v areat their final values.



5. CONCLUDING REMARKS

The purpose of this paper is to show that there are some advantages to be gained
from using a two-parameter exact penaty function based on the infinity norm of
constraint violations. This function has an advantage over one-norm based exact penalty
function in that only the gradients of the most violated constraints need be calculated in
order to find a search direction: for one-norm exact penalty functions, the gradients of all
active and violated constraints may be required.

The agorithm generates convergent sequences under mild conditions; it is
effectivein practice and the use of the second penalty parameter significantly reduces the
effort required to sol ve constraint nonlinear programs.
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