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Abstract. We call a graph G O-graph if there are an optimal coloring of the
set of vertices of G and an optimal coloring of G , the complement of G, such that
any color-class of G intersects any color-class of G. The main result of this paper
is characterize this class by forbidden induced subgraphs.
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1 Introduction.

Throughout this paper G = (V, E) is a simple(i.e. finite, undirected, without
loops and multiple edges) graph with vertex set V = V(G) and edge set E =
E(G). G designates the complement of G. A stable set in G is a set of mutually
non-adjacent vertices, and the stability number of G, denoted by a(G), is the
cardinality of a maximum stable set. The neighborhood of a vertex z is Ng(z) =
{y # z|zy € E}, denoted N(z) when there is no ambiguity. The degree of z
in G is dg(x) = |Ng(z)|. If k is a positive integer, a k-coloring of G is any
assignment ¢ : V— > {1, ..., k} with the property that for each i € {1, ..., k} the set
¢ 1(i) = {v|v € V,e(v) = i} is a stable set in G. The least possible number k of
colors (the set S; = ¢~1(i) is called the color class i of the coloring ¢) for which a
graph G has a k-coloring is called the chromatic number of G and is denoted x(G).
By P, C), and K,, we mean a chordless path on n > 3 vertices, the chordless cycle
on n > 3 vertices, and the complete graph on n > 1 vertices. A clique in G is a
subset A of V(G) that induce a complete subgraph in G (that is a stable set in G)
The clique covering number of G (i.e. the chromatic number of G) will be denoted
by 8(G). The density or the clique number of G is the size of a largest clique
in G, ie., w(@)= a(G). A graph G is perfect if a(H)=0(H) (or, equivalently,
x(H)=w(H)) holds for any induced subgraph H of G.

The quasi-cartesian product of the two graphs G1=(V1, Ey) and G2=(Vs, E-)
is the graph G4 ® G2 whose vertex set is V; x Va2 and two vertices (v1,v2) and



(v11,vof) are adjacent iff:

v1 = v1/ and vave! € Es;

vv1! € Ey and vavse! € Eo;

vv1! € By and vy = vo/.

Let us recall that in communication theory the determining of a(G™), (G™ :=
G ® G™~1 m > 2), has an important role.

It is known (Olaru [8]) that for any two graphs G'1 and G2 holds

Ol(Gl ® GQ) S mm{a(Gl)G(Gz),a(Gz)O(Gl)},

and, consequently, if a(G) = 6(G), then a(G @ H) = a(G) - a(H), for any
graph H, and so, for such graphs we have

a(G™) = [a(@)]",m > 1.

A graph G is called a — partitionable if a(G) = 6(G) holds.

The famous perfect graphs are, obviously, a — partitionable (V.Chvatal,
R.L.Grahamm, A.F.Perold, S.H.Whiteside, [5]) and their characterization was
gives by M.Chudnovsky, N.Robertson, P.D.Seymour, R.Thomas ( [3]). Now is
to find other class of a — partitionable graphs, that can be non perfect, e.g.
a — partitionable graphs whose complement is a — partitionable too.

Let us call a graph G partitionable if 8(G) = a(G) and x(G) = w(G) holds.

We consider two questions which lead to perfect graphs.

We remind the following theorem of Lovasz ( [6]), originally conjectured by
Berge ( [1]).

Perfect Graph Theorem. A graph is perfect if and only if its complements
is perfect.

We will give another characterization of perfect graphs in terms of certain
polytopes associated with graphs. Let G be a graph. The stable set polytope
of G, also known as the vertex packing polytope of G, denoted by STAB(G), is
the convex hull in RY(%) of all incidence vectors of stable sets of G. A related
polytope is the fractional stable set polytope or fractional vertex packing polytope
QSTAB(G) C RV(¥) defined by the constraints

xy > 0 for every v € V(G),

> vev(k) Ty < 1 for every clique K in G.

We have STAB(G) C QST AB(G). The following theorem implies the Perfect
Graph Theorem.

Theorem ( [7]). For any graph G, the following conditions are equivalent.
(i) G is perfect,

(ii) STAB(G)=QSTAB(G),
(iii) G is perfect,
(iv) STAB(G)=QSTAB(G).

We remind a result of Chvatal ( [4]). Let A be a 0,1 matrix. We say that
the ith row of a matrix A = (a;;) is undominated if there is no row index j # ¢
such that ay < aj for all {. Let G be a graph with V(G) = {v1,v2,...,v,}, and
let K1, K>, ..., K, be its (inclusion-vise) maximal cliques. We define the maximal



clique versus vertex incidence matrix of G to be the m x n matrix A = (a;;), where
a;; = 1if v; € K, and a;; = 0 otherwise.

We consider the following linear program:

max ¢ -« subject to x > 0 and Az < 1.

For which matrices A is it true that for every objective function ¢, the linear
program has integral optimum solution? It turns out that the answer to our
question leads directly to perfect graphs.

Theorem ( [4]). The linear above program has an integral optimum solution
for every objective function c if and only if the undominated rows of A form the
maximal clique versus vertex incidence matriz of a perfect graph.

2 Properties of O-graphs.

In the begining we give a characterization of O-graphs with the w-partitionable
graphs.

Definition 1. A graph G is called an O-graph if there are an optimal coloring
of G and an optimal coloring of G, the complement of G, such that any color-class
of G intersects any color-class of G.

We remind the following results.

Theorem 2. ( [9]) Let G be a graph with n vertices. Then G is an O-graph if
and only if

X(G) = w(G),x(G) = a(G) and n = a(G) - w(G).

Remark 3. ( [9]) A graph G is an O-graph if and only if the set of vertices
can be partitioned in w stable sets each of it having a elements and in a cliques
with w vertices.

Corollary 4. ( [9]) If G is an O-graph then, any color-class of any optimal
coloring intersects any clique from any optimal covering with cliques of G.

Definition 5. ( [9]) Let p, q be positive integer. A graph G is called (p,q) —
decomposable if G admits a p-coloring (S, ..., Sp) where |S;| = q for alli =1,...,p.

Corollary 6. ( [9]) A graph G is O-graph if and only if G is (p,q) —
decomposable and G is (q,p) — decomposable , for some p and q.

Proposition 7. ( [9]) Let G be an O-graph. Then for any optimal coloring
(S1,..,80) of G, the subgraph induced by S; U S; has a perfect matching for all
i, =1,..,w withi# j.

Next, we characterize the class of Ograph by forbidden induced subgraphs.

A graph G is called w — partitionable if G is o — partitionable.

Definition. A graf G with n vertices and m edges is called k-mazimal (in
relation to the number of edges), if its density equals k and any graph with n
vertices and more that m edges has the density greater than k.

Theorem 8. Let G = (V, E) be a graph with n vertices, m edges, a = a(Q)
and w = w(G). Then G is an O-graph with maximum number of edges if and only
if G is w — partitionable with m = o - C2.



Proof. Let G = (V, E) be a w-partitionable graph with m = o®-C2. Then there
is an w-coloring (51,52, ..., 5,). So, n < aw. We show that dg(z) = a(w — 1),
Vo € V, where dg () is the degree of . If 3z¢ € V such that dg(xo) < a(w —1)
then (because dg(z) < alw—1),Vz € V) m= 1Y .y da(z) < jawa(w —1) =
a’C? = m, a contradiction.

We show that |S;| = a, Vi=1,...,w.

If Jio (1 <ip < w) such that |S;)| < a then Jxg € V — S, such that dg(zo) <
a(w — 1), a contradiction.

Because x(G) = w(G) and |S;| = a, Vi =1, ..., w, it follows that n = aw.

Because |E(G)| = C? —m = wC?, x(G) = w and n = aw, it follows that
G admits a partition in w a-stables with the property that two distinct vertices
are adjacent if and only if they belong to distinct a-stables, that means that G is
complete multipartite with w parts each of them being a-stable, that means that
G is w-maximal. From Turan Theorem ( [10], see [2]) it follows that G is O-graph
with a maximum number of edges.

Reverse, let G be an O-graph with a maximum number of edges. Then G is w-
maximal and any vertex z from each w-clique @); from the partition in a w-cliques
C = (Q1,Q2,...,Qq) is adjacent with exactly w — 1 vertices from any w-clique of
C. So the degree of , dg(z) = a(w —1). So, m = § Y.,y da(z) = na(w — 1)
= a?C?, because n = aw. Clearly, G is w-partitionable.

Theorem 9. Let G be a graph with n vertices, o = a(G) and w = w(G). Then
G is an O-graph with mazimum number of edges if and only if G is flg-free,
|E(Q)| =a*-C?.

Proof. Let G be an K »-free graph with |E(G)| = o?-C? . Since G is a K1 »-
free graph it follows that G is complete p-partite graph. Indeed. Let us partition
the vertex set of (G into classes of vertices with the same neighborhood. Since any
two adjacent vertices have different neighborhoods (if a,b € V(G) and ab € E(G)
then b € Ng(a) and a € Ng(a)), every class of the partition induces in G an empty
graph. Now let z and y be two vertices from different classes, and suppose that x
is not adjacent to y. Since  and y have different neighborhoods, there must exist
a vertex z adjacent to one of them but non adjacent to another one. But then x,
y, z induce in G a Fm. This contradiction prove that the classes of the partition
are the parts of a complete p-partite graph.

We show that G is O-graph with maximum number of edges. We know that G
is disjoint reunion of p cliques and is ¢g-partite. Let (S1,S2,...Sp) be a p-partition in
stables of G with |S;| = s;, 1 <@ < p and (Q1,Q2,...Q4) a g-partition in stable of
G with |Q;| = ¢j, 1 < j < g. Since G is complete p-partite results that p < w and
|E(G)| =3F_, s;-(s;—1)/2. Since S; (1 < i < p) are stables in G results also that
s; <a(l<i<p). Sincew-C2=|E(G)|= 31 si-(si—1)/2<Y"  a-(a—1)/2=
p-a-(a—1)/2 it results w < p. It follows that p = w. Since G is ¢-partite and is a
disjoint reunion of p cliques results that ¢ < « and |E(G)|= ‘]1.:1 g; - (g5 —1)/2+

st f—it1 ¢~ (g —1). Since Q; (1 < j < ) are stables in G results that ¢; <

w(l<j<q). Soa?-C2=|E(@Q)|=Xi_ ¢ (¢ —1)/2+ X5 X1 - (a5 —1)
—1

<Y w w=1)/2+ Y0 Y w (w=1)=¢-C+q-(¢—-1)-C2=¢*- C2.



So a? < ¢%. It follows that ¢ = a. So G admits an w-partition (Si,...,S,) in
stables and G' admits an a-partition (Q1,...,Q,) in stables (in G). Since p = w
and w-C2 =|E(G)|=3_F_, s (s; — 1)/2 it follows that w-C2=Y"7_ | s;- (s; —1)/2.
So s; = |Si| = a (1 < i < w) otherwise it would exists a stable S; with |.S;| > a.
Since ¢ = @ and @* - C2=|E(G)|= Y_, ¢j - (¢ — 1)/2+ st it (g —1)
it follows that o® - C2=3"7_, ¢; - (¢; — 1)/2+ st i @i (g5 —1). Soq; =
|Q;] =w (1 <j < a), otherwise it would exists a clique @Q; with |Q;| > w. So G
is (w, @)-decomposable and G is (a,w)-decomposable. So G is O-graph. G has a
maximum number of edges, because otherwise it would exists a clique of cardinal
> w (because it would exists a vertex a w-clique @; adjacent all vertices a w-cliques
Qr, k # ).

Suppose that G is a O-graph with maximum number of edges. Since G is
(w, @) — decomposable graph with maximum number of edges it follows that G is a
K12 — free. Indeed. Any three vertices induce in G either K3 (if all of them are
in the same part) or K 5 (if two of them are in one part) or K (if all the vertices
are in different parts). Thus G does not contains FLQ as an induced subgraph.
We show that |E(G)| = a? - C2. We know that G is a disjoint reunion of w cliques
of cardinality . So |E(G)| = w-C2. Since n = a -w and |E(G)| = C? — |E(G)|
it follows that |E(G)| = o? - C2.

Theorem 10. Let G be a connected graph with n vertices, a« = a(G) and
w = w(G). Then G is an O-graph with mazimum number of edges if and only if
G is (Py, Paw)-free, |E(G)| = o - C2.

Proof. Let G be an O-graph with maximum number of edges. Then G is
complete w-partite with the parts of the same cardinality a and G is a disjoint
reunion of w cliques of a cardinal. So G is connected, (Py, Paw)-free, |E(G)| =
w-C? and |E(Q)|=C? — |E(Q)|= o? - C2.

Let G be connected, (Py, Paw)-free, |E(G)| = o - C?. We show that G is
fl’g-free. Suppose that vertices a, b, ¢ induce in G a fm (ac € E(G)). Let Py
be a shortest path linking a to b in G. Since Py is forbiden, this path is exactly of
length two. Let d be the unique internal vertex of the path. If d is adjacent to c,
then a, b, ¢, d induce a Paw. If d is not adjacent to ¢, then a, b, ¢, d induce a Pj.
Therefore G does not contains Fl,z as an induced subgraph. From Theorem 9 it
follows that G is an O-graph with maximum of edges.
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