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1 Introduction

Mathematical programs involving generalized convexity have been the subject of extensive

study in the recent literature. Optimality conditions and duality results were obtained

for such problems.

Ortega and Rheinboldt [9] introduced connected functions by taking the values of the

functions on continuous curves (called ”arcs”) joining two points x and y, instead of the

line segment joining these points. Avriel and Zang [1] called them ”arcwise connected”

functions.

Kaul et al. [6] defined locally arcwise connected sets which include arcwise connected

sets [1] and locally starshaped sets [2]. Also, they introduced locally connected functions
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and locally Q-connected functions on a locally connected set and studied some local-

global minimum properties satisfied by such functions. Kaul and Lyall [5] defined locally

P -connected functions and studied properties of these functions and of locally connected

(Q-connected ) functions based on the concept of right differentiability of a function with

respect to an arc. Results regarding the solution of nonlinear programming problem

involving locally P -connected functions and sufficient optimality criteria for such a pro-

gramming problem are also derived. These results are extended to the multiple objective

programming by Lyall et al. [7] which have obtained Fritz John type necessary optimality

criteria for non-linear programs and formulated a Mond-Weir type dual together with

weak and strong duality results. A proper weak minimum is defined and duality results

are established by using this concept.

Vial [16] defined ρ-convex functions. The generalization of ρ-convex functions to ρ-

pseudo convex and ρ-quasi convex functions was given by Jeyakumar [3, 4].

In [10], Preda and Niculescu defined ρ-locally arcwise connected, ρ-locally Q-connected

and ρ-locally P -connected functions and gave necessary and sufficient optimality condi-

tions for a minimax optimization problem involving such functions. They considered a

generalized Mond-Weir dual problem and established a duality result. In another paper

[11], they considered a nonlinear multiple objective programming problem, gave necessary

and sufficient optimality conditions and Wolfe and Mond-Weir type duality results. In

[13], Stancu-Minasian considered a nonlinear fractional programming problem where the

functions are ρ-locally arcwise connected, ρ-locallyQ-connected and ρ-locally P -connected

and obtained necessary and sufficient optimality conditions. A dual was formulated and

duality results are proved.

Niculescu [8], considered a multiobjective programming problem in which the objective

function contains a support function. A dual problem was formulated and a weak duality

theorem was established under generalized ρ-local conectedness conditions. In [15] (see,

also and [14]) Stancu-Minasian and Andreea Mădălina Stancu obtained sufficient opti-
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mality conditions for a nonlinear programming problem with inequality constraints and

generalized ρ-locally arcwise connected functions.

In this paper we generalize the results obtained in [14] and [15] at the case of mixed

constraints. We derive sufficient optimality conditions for a nonlinear programming prob-

lem with inequality and equality constraints where the functions involved are ρ-locally

arcwise connected, ρ-locally Q-connected, ρ-locally P -connected, locally PQ-connected

and differentiable with respect to an arc. Sufficient optimality conditions are obtained in

terms of the right differentials with respect to an arc of the functions.

The organization of the remainder of this paper is as follows. In Section 2, we shall

introduce the notation and definitions which are used throughout the paper. In Section

3, we shall give sufficient optimality criteria for a nonlinear programming problem with

mixed constraints.

2 Preliminaries

In this section we introduce the notation and definitions which are used throughout the

paper.

Let Rn be the n-dimensional Euclidean space and Rn
+ its nonnegative orthant, i.e.,

Rn
+ = {x ∈ Rn, xj = 0, j = 1, . . . , n} . Throughout the paper, the following conventions

for vectors in Rn will be followed :

x > y if and only if xi > yi (i = 1, . . . , n) ,

x = y if and only if xi = yi (i = 1, . . . , n) ,

x ≥ y if and only if xi = yi (i = 1, . . . , n) , but x 6= y.

Throughout the paper, all definitions, theorems and corollaries are numbered consec-

utively in a single numeration system in each section.

Let X0 ⊆ Rn be a nonempty and compact subset of Rn.
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Let x, x ∈ X0. A continuous mapping Hx,x : [0, 1]→ Rn with

Hx,x (0) = x,Hx,x (1) = x

is called an arc from x to x.

Definition 2.1 [6] We say that the set X0 ⊆ Rn is a locally arcwise connected set at

x (x ∈ X0) (X0 is LAC(x), for short) if for any x ∈ X0 there exist a positive number

a(x, x), with 0 < a(x, x) 5 1,and a continuous arc Hx,x such that Hx,x (λ) ∈ X0 for any

λ ∈ (0, a(x, x)).

We say that the set X0 is locally arcwise connected if X0 is locally arcwise connected

at any x ∈ X0.

If we choose the function Hx,x of the form Hx,x (λ) = (1− λ)x + λx, we find out the

definition of locally starshaped set as given by Ewing [2].

Definition 2.2 [10]. Let f : X0 −→ R be a function, where X0 ⊆ Rn is a locally arwise

connected set at x ∈ X0 with the corresponding function Hx,x (λ) and a maximum positive

number a (x, x) satisfying the required conditions. Also let ρ ∈ R and d (·, ·) : X0×X0 →

R+ such that d (x, x) 6= 0 for x 6= x. We say that f is:

(i1) ρ-locally arcwise connected at x (f is ρ-LCN(x) , for short) if for any x ∈ X0,

there exist a positive number d(x, x) 5 a(x, x) and an arc Hx,x in X0 on [0, d (x, x)]such

that

f(Hx,x (λ)) 5 λf(x) + (1− λ)f(x)− ρλd (x, x) , 0 ≤ λ ≤ d(x, x).(2.1)

(i2) ρ-locally Q-connected at x(ρ-LQCN(x) ) if for any x ∈ X0, there exist a positive

number d(x, x) 5 a(x, x) and an arc Hx,x in X0 on [0, d (x, x)] such that

f(x) 5 f(x),

0 ≤ λ ≤ d(x, x)

⎫⎬⎭⇒ f(Hx,x (λ))− f(x) 5 −ρλd (x, x) .
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(i3) ρ-locally P -connected at x(ρ-LPCN(x)) if for any x ∈ X0, there exist a positive

number d(x, x) 5 a(x, x) and an arc Hx,x in X0 on [0, d (x, x)] and a positive number γx,x

such that

f(x) < f(x),

0 ≤ λ ≤ d(x, x)

⎫⎬⎭⇒ f(Hx,x (λ)) 5 f(x)− λγx,x − ρλd (x, x) .

(i4) ρ-locally strictly P -connected at x(ρ-LSTPCN(x) ) if for any x ∈ X0, there exist a

positive number d(x, x) 5 a(x, x),an arc Hx,x in X0 on [0, d (x, x)] and a positive number

γx,x such that

x 6= x, f(x) < f(x),

0 ≤ λ ≤ d(x, x)

⎫⎬⎭⇒ f(Hx,x (λ)) < f(x)− λγx,x − ρλd (x, x) .

The function f is said to be ρ-locally strictly arcwise connected at x ∈ X0 (ρ-LSCN(x))

if for each x ∈ X0, x 6= x0 the inequality (2.1) is strict.

If f is ρ-LCN(x) (ρ-LSCN(x)) at each x ∈ X0, then f is said to be ρ-LCN (ρ-LSCN)

on X0.

If f is ρ-LQCN at each x ∈ X0, then f is said to be ρ-LQCN on X0.

If f is ρ-LPCN at each x ∈ X0, then f is said to be ρ-LPCN on X0.

Definition 2.3 [5]. Let f : X0 −→ R be a function, where X0 ⊆ Rn is a locally arcwise

connected set at x ∈ X0, with the corresponding function Hx,x (λ) and a maximum positive

number a (x, x) satisfying the required conditions. The right differential of f at x with

respect to the arc Hx,x (λ) is give by

(df)+(x,Hx,x

¡
0+
¢
) = lim

λ→0+
1

λ
[f(Hx,x (λ))− f(x)]

provided the limit exists.

In this case, f is called right directionally differentiable at x with respect to the arc

Hx,x (λ) .
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If f is differentiable at any x ∈ X0, then f is said to be differentiable on X0.

According to Avriel and Zang [1], (df)+(x,Hx,x (0
+)) may also be called directional

derivative of f with respect to the arc Hx,x (λ) at λ = 0. If the function f possess a right

derivative with respect to the arc Hx,x (λ) at λ = 0, then

f (Hx,x (λ)) = f (x) + λ(df)+(x,Hx,x

¡
0+
¢
) + λω (λ) ,

where λ ∈ [0, a (x, x)] and ω : [0, a (x, x)]→ R satisfies lim
λ→0+

ω (λ) = 0.

In order to prove the sufficient optimality conditions we introduce the following notion.

Definition 2.4 Let f : X0 −→ R be a function, where X0 ⊆ Rn is a locally arcwise

connected set at x ∈ X0 with the corresponding function Hx,x (λ) and a maximum positive

number a (x, x) satisfying the required conditions (from Definition 2.1). We say that f is

locally PQ-connected at x (LPQCN(x)) if for any x ∈ X0 there exist a positive number

d (x, x) 5 a (x, x) and an arc Hx,x in X0 on [0, d (x, x)] such that

f (x) = f (x)

0 < λ < d (x, x)

⎫⎬⎭⇒ f (Hx,x (λ))− f (x) 5 0

The following results can be obtained from the above definitions.

Theorem 2.5 Let f : X0 −→ R, x ∈ X0 where X0 is a locally arcwise connected set at

x. We assume that for every x ∈ X0, f posseses a right derivative with respect to the arc

Hx,x (λ) at λ = 0. Then

a) If the function f is ρ-LCN(x), then

f(x)− f(x) = (df)+(x,Hx,x

¡
0+
¢
) + ρd (x, x) , ∀ x ∈ X0,

b) If the function f is ρ-LSCN(x),then

f(x)− f(x) > (df)+(x,Hx,x

¡
0+
¢
) + ρd (x, x) , ∀ x ∈ X0, x 6= x,
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c) If f is ρ-LQCN(x) , then

f(x) 5 f(x)⇒ (df)+
¡
x,Hx,x

¡
0+
¢¢
5 −ρd (x, x) , x ∈ X0,

d) If f is ρ-LPCN (x) , then

(df)+
¡
x,Hx,x

¡
0+
¢¢
= −ρd (x, x)⇒ f (x) = f (x) , x ∈ X0,

e) If f is ρ-LSTPCN(x) , then

(df)+
¡
x,Hx,x

¡
0+
¢¢
= −ρd (x, x)⇒ f (x) > f (x) , x ∈ X0.

f) If f is LPQCN(x), then

f (x) = f (x)⇒ (df)+
¡
x,Hx,x

¡
0+
¢¢
5 0.

3 Sufficient Optimality Criteria

In this section we will prove the sufficient conditions for optimality for Problem P. These

conditions can be obtained by replacing the equality constraint h (x) = 0 by two inequality

constraints, viz. h (x) 5 0,−h (x) 5 0 and then applying the results of [15]. However, in

this paper we will use a direct method.

Consider the nonlinear programming problem with mixt constraints

Min f (x) (3.1)

(P) subject to

g (x) 5 0, h (x) = 0

x ∈ X0
(3.2)

where

i) X0 ⊆ Rn is a nonempty open locally arcwise connected set,

ii) f : X0 → R,
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iii) g = (gi)15i5m : X
0 → Rm

iv) h = (hj)15j5k : X
0 → Rk

v) the right differentials of f, gi( i = 1, . . . ,m) and hj (j = 1, ..., k) at x exist with

respect to the same arc Hx,x (λ) .

Let X = {x ∈ X0 | g(x) 5 0, h (x) = 0} be the set of all feasible solutions to problem

(P).

Let

Nε(x) = {x ∈ Rn | kx− xk < ε}.

Definition 3.1 a) x is said to be a local minimum solution to problem (P) if x ∈ X and

there exists ε > 0 such that x ∈ Nε(x) ∩X ⇒ f(x) 5 f(x).

b) x is said to be the minimum solution to problem (P) if x ∈ X and f (x) = min
x∈X

f (x) .

For x ∈ X we denote I = I (x) = {i|gi (x) = 0},(the set of indices of active constraints

at x), J = J (x) = {i|gi (x) < 0} (the set of indices of nonactive constraints at x) and

gI = (gi)i∈I . Obviously I ∪ J = {1, 2, . . . ,m} .

Let u ∈ Rm be such that u = 0 and uTg (x) = 0. Evidently, uI = 0 and uJ = 0

where uI and uJ denotes the subvectors of u corresponding to the index sets I and J ,

respectively.

Let K = {i ∈ I : ui > 0} and L = {i ∈ I : ui = 0}; K ∪ L = I.

Let gK and gL be the subvectors of gI corresponding to the index sets K and L,

respectively.

In this section we give sufficient optimality theorems of the Kuhn-Tucker and Fritz

John type for problem (P).

First we give a sufficient optimality theorem of the Kuhn-Tucker type. The functions

f, g and h are not differentiable but are directional differentiable with respect to the same

arc Hx,x (λ) at λ = 0.

The next theorem does not require the function h to be directionally differentiable.
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Let {K1,K2,K3} be a partition of the index set K; thus Ki ⊂ K for each i =

1, 2, 3,Kr ∩Ks = ∅ for each r, s ∈ {1, 2, 3} with r 6= s, and
3
∪
i=1

Ki = K.

Theorem 3.2 Let x ∈ X0 ⊆ Rn, where X0 is a locally arcwise connected set and let

u ∈ Rm. We assume that there exist the right differentials at x, with respect to the same

arc Hx,x of f and g and (x, u) satisfies the following conditions:

(df)+(x,Hx,x

¡
0+
¢
) + uT (dg)+(x,Hx,x

¡
0+
¢
) = 0, ∀ x ∈ X, (3.3)

uTg (x) = 0; (3.4)

g (x) 5 0;h (x) = 0.(3.5)

u = 0, u 6= 0(3.6)

Assume furthermore that the following hypotheses are satisfied:

i1) gi, i ∈ K1, is αi-LQCN(x) , (3.7)

i2) u
T
K2
gK2 is β-LQCN(x) (3.8)

i3) f + uTK3
gK3 is γ-LPCN (x) (3.9)

and

i4)
X
i∈K1

αiui + β + γ ≥ 0.(3.10)

Then x is a minimum solution to Problem (P).

Proof. Let x ∈ X be any feasible solution to problem (P). Since gK1 (x) 5 0 = gK1 (x) ,

from (3.7), uK1 > 0, and Theorem 2.5 we obtain the following inequality

uTK1
(dgK1)

+(x,Hx,x(0
+)) 5 −

X
i∈K1

αiuid (x, x) .(3.11)
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Also, we have

uTK2
gK2 (x) 5 0 = uTK2

gK2 (x)

which by (3.8) and Theorem 2.5 implies that

uTK2
(dgK2)

+ (x,Hx,x

¡
0+
¢
) 5 −βd (x, x) .(3.12)

Since uJ = 0 and uL = 0, it follows from (3.3) that

(df)+(x,Hx,x

¡
0+
¢
) + uTK3

(dgK3)
+(x,Hx,x

¡
0+
¢
) =

−uTK1
(dgK1)

+(x,Hx,x

¡
0+
¢
)− uTK2

(dgK2)
+(x,Hx,x

¡
0+
¢
).(3.13)

From (3.11), (3.12) and (3.13) we see that

(df)+(x,Hx,x

¡
0+
¢
) + uTK3

(dgK3)
+(x,Hx,x

¡
0+
¢
) =

ÃX
i∈K1

αiui + β

!
d (x, x)

which in view of (3.10) implies that

(df)+(x,Hx,x

¡
0+
¢
) + uTK3

(dgK3)
+(x,Hx,x

¡
0+
¢
) = −γd (x, x)

or

¡
d
¡
f + uTK3

gK3

¢¢+ ¡
x,Hx,x

¡
0+
¢¢
= −γd (x, x)

From (3.9) and Theorem 2.5 we deduce that

f (x) + uTK3
gK3 (x) = f (x) + uTK2

gK2 (x) .(3.14)

Inasmuch uTK3
gK3 (x) 5 0 and uTK3

gK3 (x) = 0, it follows from (3.14) that f (x) = f (x) .

Hence x is a minimum solution to problem (P).

The above theorem has a number of special cases which easily can be identified by

suitable choices of the partitioning sets {K1,K2,K3}. We shall state these cases as an

corollary.
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Corollary 3.3 Let x ∈ X0 ⊆ Rn, where X0 is a locally arcwise connected set and let

u ∈ Rm. We assume that there exist the right differential at x with respect to the same

arc Hx,x of f and g and (x, u) satisfies conditions (3.3)− (3.6).

Assume furthermore that any one of the following hypotheses is satisfied.

i1) f + uTKgK is γ-LPCN(x), where γ = 0,

i2) a) gi, i ∈ K, is αi-LQCN(x)

b) f is γ-LPCN(x)

c) i∈Kαiui + γ ≥ 0.

i3) a) u
T
KgK is β-LQCN(x) ,

b) f is γ-LPCN(x) ,

c) β + γ ≥ 0,

i4) a) u
T
K2
gK2 is β-LQCN(x) ,

b) f + uTK3
gK3 is γ-LPCN(x) , where {K2, K3} is a partition of K,

c) β + γ ≥ 0.

i5) a) gi, i ∈ K1, is αi-LQCN(x) ,

b) f + uTK3
gK3 is γ-LPCN(x) , where {K1,K3} is a partition of K,

c)i∈K1
αiui + γ ≥ 0,

i6) a) gi, i ∈ K1, is αi-LQCN(x) ,

b) uTK2
gK2 is β-LQCN(x) ,

c) f is γ-LPCN(x)

d) i∈K1αiui + β + γ ≥ 0, where {K1, K2} is a partition of K.

Then x is a minimum solution to problem (P).

Proof. Each of the six sets of conditions given in Corollary 3.3. can be considered

as a family of sufficient optimality conditions whose members can easily be identified

by appropriate choices of the partitioning sets {K1,K2,K3} . In Theorem 3.2, let i1)

K1 = K2 = ∅,K3 = K, i2) K1 = K,K2 = K3 = ∅, i3) K1 = K3 = ∅,K2 = K, i4)

K1 = ∅, K2 6= ∅,K3 6= ∅, i5) K1 6= ∅, K2 = ∅,K3 6= ∅, and i6) K1 6= ∅,K2 6= ∅,K3 = ∅.
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Let v ∈ Rk and define P = {i|vi > 0} and Q = {i|vi < 0}. Let {P1, P2, P3} and

{Q1, Q2, Q3} be partitions of the sets P and Q, respectively.

Let hPi and hQi (i = 1, 2, 3) be the subvectors of h corresponding to the index sets Pi

and Qi (i = 1, 2, 3), respectively. Let vPi and vQi
(i = 1, 2, 3) be the subvectors of v to the

index sets Pi and Qi (i = 1, 2, 3), respectively.

The next theorem does not require the function g to be directionally differentiable.

Theorem 3.4 Let x ∈ X0 ⊆ Rn, where X0 is a locally arcwise connected set and let

v ∈ Rk. We assume that there exist the right differentials at x, with respect to the same

arc Hx,x of f and h and (x, v) satisfies the following condition:

(df)+
¡
x,Hx,x

¡
0+
¢¢
+ vT (dh)+

¡
x,Hx,x

¡
0+
¢¢
= 0, ∀x ∈ X.(3.15)

Assume furthermore that

i1) hi, i ∈ P1, is LPQCN(x) , (3.16)

i2) − hi, i ∈ Q1, is LPQCN(x) , (3.17)

i3) v
T
P2
hP2 + vTQ2hQ2is LPQCN(x) , (3.18)

and

i4) f + vTP3hP3 + vTQ3hQ4 is τ − LPCN (x) , (τ ≥ 0) (3.19)

Then x is a minimum solution to Problem (P).

Proof. Let x ∈ X be any feasible solution to problem (P). Since hi (x) = hi (x) , i ∈ P1,

from (3.16) and Theorem 2.5 we obtain

(dhi)
+ ¡x,Hx,x

¡
0+
¢¢
5 0
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for any i ∈ P1.

Now multiplying this inequality by vi, i ∈ P1, and summing, we obtain

vTP1 (dhP1)
+ ¡x,Hx,x

¡
0+
¢¢
5 0.(3.20)

Also, we have

hi (x) = hi (x) , i ∈ Q1

which by (3.17) together with vQ1 < 0 and Theorem 2.5 implies that

vTQ1 (dhQ1)
+ ¡x,Hx,x

¡
0+
¢¢
5 0.(3.21)

We also have

vTP2hP2 (x) + vTQ2hQ2 (x) = vTP2hP2 (x) + vTQ2hQ2 (x)

which by (3.18) and Theorem 2.5 implies that

vTP2 (dhP2)
+ ¡x,Hx,x

¡
0+
¢¢
+ vTQ2 (dhQ2)

+ ¡x,Hx,x

¡
0+
¢¢
5 0.(3.22)

The relation (3.15) can be written as

(df)+
¡
x,Hx,x

¡
0+
¢¢
+ vTP1 (dhP1)

+ ¡x,Hx,x

¡
0+
¢¢
+ vTP2 (dhP2)

+ ¡x,Hx,x

¡
0+
¢¢
+

vTP3 (dhP3)
+ ¡x,Hx,x

¡
0+
¢¢
+ vTQ1 (dhQ1)

+ ¡x,Hx,x

¡
0+
¢¢
+

+vTQ2 (dhP2)
+ ¡x,Hx,x

¡
0+
¢¢
+ vTQ3 (dhQ3)

+ ¡x,Hx,x

¡
0+
¢¢
= 0, ∀ x ∈ X

which in view of (3.20), (3.21) and (3.22) implies that

(df)+
¡
x,Hx,x

¡
0+
¢¢
+ vTP3 (dhP3)

+ ¡x,Hx,x

¡
0+
¢¢
+ vTQ3 (dhQ3)

+ ¡x,Hx,x

¡
0+
¢¢
= 0

or

¡
d
¡
f + vTP3hP3 + vTQ3hQ3

¢¢+ ¡
x,Hx,x

¡
0+
¢¢
= 0 = −τd (x, x) .
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Using (3.19) and Theorem 2.5 we deduce that

f (x) + vTP3hP3 (x) + vTQ3hQ3 (x) = f (x) + vTP3hP3 (x) + vTQ3hQ3 (x)

which implies

f (x) = f (x) .

Hence x is a minimum solution to Problem (P1).

Let u ∈ Rm. Let L = {i|ui > 0} . Let v ∈ Rk and define P = {i|vi > 0} and

Q = {i|vi < 0}. Let {L1, L2, L3, L4} , {P1, P2, P3, P4} and {Q1, Q2, Q3, Q4} be partitions

of the sets L,P and Q, respectively.

The following theorem is a combination of Theorems 3.4 and 3.5.

Theorem 3.5 Let x ∈ X0 ⊆ Rn, where X0 is a locally arcwise connected set and let

u ∈ Rm and v ∈ Rk. We assume that there exist the right differentials at x, with respect

to the same arc Hx,x of f, g and h and (x, u, v) satisfies the following conditions:

(df)+ (x,Hx,x (0
+)) + uT (dg)+ (x,Hx,x (0

+)) + v (dh)+ (x,Hx,x (0
+)) = 0, ∀x ∈ X

uTg (x) = 0

g (x) 5 0, h (x) = 0

u = 0

Assume furthermore that

i1) gi, i ∈ L1, is αi − LQCN (x) ,

i2) hi, i ∈ P1, is LPQCN(x) ,

i3) − hi, i ∈ Q1, is LPQCN(x) ,

i4) u
T
L2
gL2 is β-LQCN(x) ,

i5) v
T
P2
hP2 + vTQ2hQ2 is LPQCN(x) ,

i6) u
T
L3
gL3 + vTP3hP3 + vTQ3hQ3 is δ − LQCN(x) ,
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i7) f + uTL4gL4 + vTP4hP4 + vTQ4hQ4 is τ− LPQCN(x) ,

i8)
P

ui
i∈L1

αi + β + δ + τ ≥ 0.

Then x is a minimum solution to Problem (P).

The proof of this theorem is similar to that of Theorems 3.2 and 3.4.

In what follows we consider sufficient optimality conditions of the Fritz John type.

Let (x, v0, v, w) be a Fritz John point, where x ∈ X0(a locally arcwise connected set),

v0 ∈ R, v ∈ Rm and w ∈ Rk. Assume that (x, v0, v, w) satisfies the following conditions:

v0(df)
+(x,Hx,x

¡
0+
¢
) + vT (dg)+(x,Hx,x

¡
0+
¢
) + wT (dh)+(x,Hx,x

¡
0+
¢
) = 0, ∀ x ∈ X

(3.23)

vTg (x) = 0 (3.24)

(v0, v) = 0, (v0, v, w) 6= 0. (3.25)

If v0 = 0, then conditions (3.23)-(3.25) become

vT (dg)+(x,Hx,x

¡
0+
¢
) + wT (dh)+(x,Hx,x

¡
0+
¢
) = 0, ∀ x ∈ X (3.26)

vTg (x) = 0 (3.27)

v = 0, (v, w) 6= 0. (3.28)

Let I and J be the sets defined at the beginning of this section. Due to the relation

(3.24) we have vI = 0 and vJ = 0. Let L = {i ∈ I : vi > 0} . Let gL be the subvector of

gI corresponding to the index set L. Also, let vL be the subvector of v corresponding to

the index set L.
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Let w ∈ Rk. Define the index sets U and V by U = {i|wi > 0} and V = {i|wi < 0}.

Let hU and hV be the subvectors of h corresponding to the index sets U and V , respec-

tively. Also, let wU and wV be the vectors of W corresponding to the index sets U and

V , respectively.

Theorem 3.6 Let x ∈ X0 ⊆ Rn, where X0 is a locally arcwise connected set. We assume

that there exist the right differential at x, with respect to the same arc Hx,x of f, g and h.

Let (x, v0, v, w) be a Fritz John point which satisfy conditions (3.23)− (3.25).

i) If v0 > 0, let the assumptions of Theorem 3.5 hold with

u = v−10 v and v = v−10 w

ii) If v0 = 0, let (x, 0, v, w) satisfy (3.26)− (3.28) and the following hypotheses are

satisfied

a) gi, i ∈ L1, is αi-LQCN(x) ,

b) hi, i ∈ U1, is LPQCN (x) ,

c) −hi, i ∈ V1, is LPQCN (x) ,

d) vTL2gL2is β-LQCN (x) ,

e) wT
U2
hU2 + wT

V2
hV2 is LPQCN(x)

f) vTL3gL3 + wT
U3
hU3 + wT

V3
hV3 is δ − LQCN (x)

g) i∈L1αivi + β + δ > 0,

Then x is a global minimum solution to Problem (P).

The proof of this theorem is similar to that of Theorem 3.4 from [15]. Hence the proof

is submitted.
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