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Abstract

We present a scaling decreasing path algorithm for the minimum flow
problem, which is a network flow problem that was not treated so often
as the maximum flow problem in the literature on network flow. Our
algorithm always decreases flow along paths from the source node to the
sink node with sufficiently large residual capacity and it runs in

O(mlogc) time.
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1. MINIMUM FLOW PROBLEM

The literature on network flow problem is extensive. Over the past 50 years
researchers have made continuous i mprovements to algorithms for solving severa classes
of problems. From the late 1940s through the 1950s, researchers designed many of the
fundamentd algorithms for network flow, including methods for maximum flow and
minimum cost flow problems. In the next three decades, there are many research
contributions concerning improving the computational complexity of network flow
algorithms by using enhanced data structures, techniques of scaling the problem data etc.
The agorithms designed in the 1990s did not improve essentialy the agorithms already
known at that time. The minimum flow problem was not treated so often as the maximum
flow problem in the literature on network flow.



We consider a capacitated network G=(N,A,l,c,st) with a nonnegative capacity
c(i,j) and with a nonnegative lower bound I(i,j) associated with each arc (i,j)eA. We
distinguish two specia nodes in the network G: a source node s and a sink nodet.

A flow is afunction f:A—R. satisfying the next conditions:

Vv, i=s
f@i,N)— f(N,i)=1:0, i=st (119
-V, i=t
1(i,)) <f(i,j) <c(i,j) V(i,j)eA (1.1.b)
for somev > 0, where
Fi,N)= > (i J)
il j)eA
and
FNL) = D F()0)

il(ieA
Werefer to v as the value of the flow f.

The minimum flow problem is to determine a flow f for which v is minimized.

For the minimum flow problem, the residual capacity r(i,j) of any arc (i,j) €A,
with respect to a given flow f, is given by r(i,j)=c(j,i)-f(j,i)+f(i,j)-1(i,j). By convention, if
(j,i)¢A then we add arc (j,i) to the set of arcs A and we set I(j,i)=0 and c(j,i)=0. The
residua capacity of the arc (i,j) represents the maximum amount of flow from the node i
to nodej that can be cancdled. The network G¢ =(N,Ay) consisting only of the arcs with
positive residua capacity is referred to as the residual network (with respect to the flow
f).

A cut is a partition of the node set N into two subsets S and S=N-S we represent
this cut using the notation [S, S]. Werefer toacut [S S] asanst cut if seSandtg S.
Werefer toan arc (i,j) withieSand je S asaforward arc of the cut, and an arc (i,j) with
ie Sand jeSas abackward arc of the cut. Let (S, S) denote the set of forward arcsin the
cut, and let (S,S) denote the set of backward arcs.

For the minimum flow problem, we define the capacity c[S S] of an st cut [S S]
as the sum of the lower bounds of the forward arcs minus the sum of the capacities of the
backward arcs. That is,

c[S S]=I(S S)- ¢(S,9)

We refer to an st cut whose capacity is maximum among all st cuts as a
maxi mum cut.

Let c=max{c(i,j)|(i,j)eA}.

Theorem 1.1 (Min-Flow Max-Cut Theorem). If there is a feasible flow in the network,
the value of the minimum flow from a source node s to a sink node t in a capacitated
network with nonnegative lower bounds equals the capacity of the maximum s-t cut.

This theorem can be proved in a manner similar to the proof of the Max-Flow
Min-Cut Theorem. For details see[1].



We refer to a path in G from the source node s to the sink nodet as a decreasing
path if it consists only of arcs with positive residual capacity. Clearly, thereis an one-to-
one correspondence between decreasing pathsin G and directed paths fromstotin Gy.

Given a decreasing path P in G, we can decrease the current flow f in the
following manner:

f(i,j)—r,if (i,j)isaforwardarcin P
f(i,j)=<1(@,]j)+r,if (i, )isabackwardarcin P

f(i,j), if (i,j)isnotanarc in P
wherer=min{ry,r}, ri=min{f(i,j) - 1(i,j) | (i,j) isaforward arcin P}, ro=min{ c(i,j) - f(i,j) |
(i,j) isabackward arcin P }. We refer tor as the residual capacity of the decreasing path
P.
Theorem 1.2 (Decreasing Path Theorem). A flow f is a minimum flow if and only if the
residua network Gt contains no directed path from the source node to the sink node.

This theorem can be proved in a manner similar to the proof of the Augmenting
Path Theorem. For details see[1].

Theorem 1.3 If f is aflow of vaue v in the network G, [Sé] isan st cut and f'isaflow
of value V', with v'< vthenv - v <r[S S].
Proof. By Theorem 1.1, V' > ¢S S] = I(SS) - ¢(S,S). But v = (S S) - f(S.,9.
Consequently, v-v'< (S S) - (S,9 - 1(S S) + ¢(S,9) = 1[S S].

The minimum flow problem in a nework can be solved in two phases:

(1) establishing afeasible flow
(2) from agiven feasible flow, establish the minimum flow.

11 ESTABLISHING A FEASIBLE FLOW
The problem of determining a feasible flow consists in finding a function

f: A>R, that satisfies conditions (1.1.8) and (1.1.b). First, we transform this problem into
a circulation problem by adding an arc (t,s) of infinite capacity and zero lower bound.
This arc carries the flow sent from node s to node t back to node s. Clearly, the minimum
flow problem admits a feasible flow if and only if the circulation problem admits a
feasible flow. Because these two problems are equivaent, we focus on finding a feasible
circulation if it existsin the transformed network G =(N, A,| ,C ,st), where

A=AU{(t,9)}

| (i.))=1(i.J), for every arc (i,j) A

I (t,9)=0

C (i.,j)=c(i.j), for every arc (i,j) €A

C (t,9)=00

The feasible circulation problem is to identify a flow f satisfying these following
constrai nts:
f (i,N)— f (N,i) =0, for every nodeieN. (L.2.9)

I (i,j)< ()< E(,), for every arc (i,j)eA (1.2.0)



By replagng f (i,j) = f'(G,j) + | (i,j) in (1.2.8) and (1.2.b) we obtain the
following transformed problem:
' G,N)— f'(Nji)= Db (i), for every nodeieN
0< f (i) < EG,j)—I (i), for every arc (i,j)eA
with the supplies/demands b (+) at the nodes defined by
b ()=1 (Ni)—I (i,N).
Clearly, ZB(i):O. We can solve this feasible flow problem by solving a
ieN
maximum flow problem defined in a transformed network. We introduce two new nodes:
asource node s’ and asink nodet’. For each nodei with b (i) > Owe add an arc (s’i) with
capacity b (i) and for each nodei with b (i) < 0 we add an arc (i,t) with capadty - b (i).
Than we solve a maximum flow problem in this transformed network. If the maximum
flow saturates all the sources and the sink arcs, then the initial problem has a feasible

solution (which is the restriction of the maximum flow that saturates all the sources and
sink arcsto theinitia set of arcs A); otherwiseit isinfeasible. For details see[1].

12 ESTABLISHING A MINIMUM FLOW

There are two approaches for solving maximum flow problem: (1) using
augmenting path algorithms and (2) using preflow-push agorithms. The agorithms of
both dasses can be modified in order to obtain minimum flow algorithms (see [6,7]). For
the minimum flow problem there is a third approach that consists in finding a maximum
flow from the sink node to the source node in the residual network (see [5,7]). In the next
section we present a scaling decreasing path al gorithm for the mini mum flow problem.

2. CAPACITY SCALING ALGORITHM
This adgorithm aways decreases flow along a path with a "sufficiently large"
residua capacity. To define the capacity scaling dgorithm for minimum flow problem

let usintroduce a parameter r and, with respect to a given flow f, define the I -residudl
network asa network containing arcs whose residual capaC|ty is a leastr . Let Gf(r)
denote the r -residual network. Note that Gi(1)=Gs and Gf(r ) isasubgraph of G.

Let us refer to a phase of the agorithm during which r remains constant as a
scaling phase and a scding phase with a specific value of rasar -scaling phase.
Observethatina r -scaling phase, each decreasing path has the residua capacity at | east

r.
The capacity scaling algorithm for the minimum flow problem is the following:

CAPACITY-SCALING ALGORITHM;
BEGIN
let f be afeasible flow in network G;
FZZZ\JOQEJ'
WHILE r >1 DO



BEGIN
WHILE Gf(F ) contains a directed path from the source node s to the sink nodet DO
BEGIN
identify a decreasing path P from the source node s to the sink nodet;
g=mir{r(i,j)|(i.j)eP};
decrease g units of flow along P;
update theresidua network G(r );
END
r:=r/2
END;
END.

Actually, the algorithm terminates with optimal residual capacities. From these
residua capacities we can determine a minimum flow in several ways. For example, we
can make a variable change: For dl arcs (i,j), let c'(i,j)=c(i,j)-I(i,j), r'G,j)=r(i,j) and
f'(i,j)=f(i,j)-1(i,)). Theresidual capacity of arc (i,j) isr(i,j)=c(j,i)-f(.i)+f(i,j)-1(i.j).

Equivd ently,
r(L))=c'(.)-FG.)+HG).
r(.)=c'(.))-F@1.)+HGD).

We can compute the va ue of ' in the following way:
f'(i.j)=max(r'(i.j)-c'(.i).0)

Similarly,

and
f'(j,)=max(r'(j,i)-c'(i,),0).
Converting back into the original variables, we obtain the following expressions:
f(i.j) =1(1,j) + max(r(i.j) - c.i) +1G.i), 0)
and

fG.1) = 1G.1) + max(r(ji) - c(i,j) +1(i,j), 0).
Theorem 2.1 If there is a feasible flow in the network G, then the capacity scding
algorithm determines a minimum flow in G.

Proof. The agorithm starts with r ::ZL"’gEJ and halves its value in every scaling phase
until r =1. Consequently, the agorithm performs 1+ \_Iog CJ:O(Iogc) scaling phases. In
the last scaling phase, r =1, so Gf(F )=Gs. Thus, the algorithm terminates with a minimum

flow in the network G.
Theorem 2.2 If there is a feasible flow in the network G, then the capacity scding

algorithm solves the minimum flow problemin O(mzlogE:) time
Proof. First, we will show that the algorithm decreases the flow at most 2m times per

scaling phase. Let f' be the flow at the end of the r -scaling phase and let V' be the value
of the flow f'. Furthermore, let S be the set of nodes reachable from node s in Gf»(F ).
Since Gf»(F) contains no decreasing path from the source node to the sink node, t¢S.
Therefore, [S, §] forms an st cut. The definition of Simplies that the residual capacity of
every arcin [S §] is strictly less then I, so the residual capacity of the cut, r[S, §] isat
most mr . By Theorem 1.3, v*-v<mr . In the next scaling phase, each decreasing path



has the residual capacity at |east r /2. Thus, in this scaling phase, the algorithm performs
at most 2m decreases of the flow.

We can identify a decreasing path in O(m) time and we can update the r -residual
network in O(m) time Thus, the complexity of a scaling phase is O(n?). Since the

algorithm performs O(l ogE ) scaling phases, it follows that it runsin O(mzlogE: ) time.
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