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Abstract
In this paper we shall present a reasonable way to compute the nilpotent
and the solvable radical of a Lie algebra.

1. INTRODUCTION

We consider some basic agorithmic problems reated to finite dimensional
associaive a gebras.

Our starting point is the structure theory of these algebras and we touch
upon some gpplications of the associative decomposition algorithms. These
include efficient algorithms for calculating the radical (solvable and nilpotent) of
LieAlgebras.

2. BASIC DEFINITIONS AND THEOREMS

First we give some basic definitions related to assod ative a gebras.

A linear space L over the fiedld k is an algebra over k if it is equipped with a
binary, k — bilinear operation (caled multiplication). We denote de product of X,ye L
by xy. Multiplication is assured to be associative, i.e. x(yz)=(xy)z for every x,y,zeL .

We shall assume throughout that dim, L =n<o.We say that L is a commutative
algebraif xy = yx for every x,yelL..

An k subspace S of L is asubalgebra of L, if Sis closed under multiplication: if
X,yeS then xye S.

An k subspace | of L is aleft ideal of L if yxeL whenever xel and yelL. A
right ideal is defined analogously. An k — subspace | of L isanideal of L if | isboth left



and right ideal of L. If | isanided in L, then we can form the factor algebra L/l. The
notions of homomor phism and L-module are used in the standard way.
The dgebral issimpleif it has no ideals except (0) and L, and LL = (0), where

LL isthe agebra generated by products ab with a,be L. We say that L is the direct sum
of its ideals Lq,...,Lg (written as L;®..®Lg) if L is the direct sum of these linear

subspace.
Theorem 2.1 (Representation Theorem) Let L be an algebra over the field k and suppose
that dim, L =n. Then L isisomorphic to asubalgebraof M (k) - the algebraof all n+ 1

by n + 1 matrices over k.

An dement xeL is called nilpotent if xP =0 for some positive integer p. An
element x is strongly nilpotent if xy is nilpotent for every ye L.

The Jacobson radical Rad(L) of L is the set of strongly nilpotent elements of L.

It is not difficult to see that Rad(L) isan ideal of L and that the fact L/Rad(L) has no
nonzero strongly nilpotent elements. It can be shown dso, that Rad(L), is a nilpotent
ideal: there exist a postive integer p such that x;x;..xp, =0, for al
X1,Xp 500 Xp € Rad(L).

Andgebral issemisimpleif |L|> 2 and Rad(L)=(0).

A characterization of semisimple agebrait was done by next theorem
Theorem 2.2 (Wedderburn’s Theorem). If L is a finite dimensiona semismple
associaive algebra over the field k, then L is expressible as adirect sum

L=L®L,&..DL,,
where the L; are exactly the minimal nonzero ideals of L. Moreover, L; is isomorphic to
matrix algebra M ; (k;) where ki is a possibly noncommutative extenson fied of k
(1<i<s)

In the next section we present algorithms for computing the Jacobson radicd.
Here the interesting caseis when k (and consequently L) is finite. We explain some basic
methods for finding in a computationaly efficient way the structura ingredients of
algebras. These methods are applied in the last section to the computation of the
(solvable) radical and the nilradical of Liealgebras.

We recall first some basic facts about Lie algebras. Detailed exposition can be
found in Jacobson [10] and Humphreys [9]. A linear space G over the fidld k is a Lie
algebra, if Gisequipped with ak — bilinear binary operation [ , ] such that [X, X] =0 for
evey xeG and [[x,ylz]+[ly.z}x]+[zx].y]=0 for every Xx,y,zeG (the Jacobi
identity).

Just likein the associative case, we have the familiar notions of subalgebra, ideal,
factor algebra and homomorphism for Lie algebras.

The derived series of G is the collection G'I) of idealsin G defined as G©) = G

and G = [G(i),G(i)] for i >0.



A Lieagebrais caled solvable if the derived series reaches (0) in finitely many
steps: G = (0) for some natural number n.

Here we consider finite dimensiona Lie agebra only. In this case G hase an
unique maximal solvableided, denoted by R(G),theradica of G.

The descending central series of G is the sequence G' of ideals of G, where
G°=G and G"*1=|G,G'| for i>0. A Lie adgebra G is nilpotent if G" =(0) for some
naturd number n. If dim, G <, then G has an unique maximal nilpotent ideal N (G),
thenilradical of G.

Example Let L be an associative algebra over k. For two dements a,be L we write
[a,b] = ab - ba for the additive commutator. It is easy to check this operation satisfies the
identities of a Lie-bracket. As a consequence, if a k — subspace S of L is closed with

respect to the operation [ , ], then S ca be considered as a Lie agebra. Particularly
important are the Lie subalgebras of this form which are obtained from G =M p(k). They

are caled linear Lie algebras.
There is a straightforward ana ogue of the regular representation for a Lie algebra

G. Foran xeG, letad(x):G— G be the linear map that maps ye G to [x,y] The

map x — ad(x) isaLie agebra homomorphism from G to linear Lie algebra gl (G) of al
linear transformations of the k space G. Unfortunatey, this map is far from be ng faithful
(if Gissimple, then this map is faithful). We just remark here that, according to a deep
theorem of Ado and Iwasuwa [10], every finite dimensional Lie algebra is actualy
isomorphicto alinear Lie algebra.

We are interested in exact computations, and k will be either a finite field or on
algebraic number field.

We specify now the input of the algorithmic problems addressed. To obtain
sufficiently general results, we consider an algebrato be given as a collection of structure
constants.

If L is an agebra over the field k and e ,e,,...,e, is abasis of the k — space L,

then multiplication is completely described if we express the product ee; as linear

combinations of the basis € ements:
er' = }/ijlel +...+}/ijnen

The coefficients ;) <k are called structure constants. When an algebra s given
as input, we assume that it is represented as an array of structure constants. Substructures
(sack as subalgebras, ideals, subspaces) can then be represented by bases whose € ements
arelinear combinations of basis € ements of the ambient structure (algebra).

In our cases k can be viewed as an algebra over its prime field P. (If k is finite
then P =k, for some primep, if kis number fieldthanP = Q).

In these cases k is usudly specified by giving the (monic) minimal polynomid f
of a single generating dement o over the prime field P. This is a special case of the
representation with structure constants. The coefficient of f give the structure constants

with respect to P - basis La,a*,...,a" " of k where n=dim, k.



Another important way to represent an algebrais in the form of a matrix algebra.
In these cases we are given a collection of matrices which generate the algebra. The
algorithms described in these notes are applicable in this setting as well. From such a
matrix representation one can effidently find a basis of the algebra and then cdculate
structure constants with respect to this basis.

We would like to consider a gorithms which have a theoretical guarantee for their
efficiency. From the perspective of computer science these are the polynomial time
algorithms. An agorithm runs in polynomid time if, on inputs of length n the
computation requires at most n° bit operations. Here ¢ > 0 is a constant i ndependent of n,
and nisapositiveinteger.

3. COMPUTING THE RADICAL

Suppose L is afinite dimensiona algebra over the fidd k, given as a collection of
structure constants. Our objective is to find a basis of Rad(L), the radical of L, in time
polynomia intheinput size.

If char k = 0, then the problem is equivalent to solving a system of linear
equations over the ground field as follows from the characterization of the radica by
Dickson:

Theorem 3.1 Let L be afinite dimensional agebra of matrices over afied k, and char
k=0.Then
Rad(L)={xeL /Tr(yx)=0for everyye L}.

Infact, if e,e;,...,e, isalinear basis of L over k, thento find Rad(L), it suffices
to solvethelinear system Tr (q x) =0,i=1,...,n, wherexisan “unknown” element of L.

We now turn to the case where L (and hence k =k, ) isfinite. We assume that p
isaprime, qisapower of p, k =k, andthat L isasubalgebraof M (k).

The statement of Dickson’s Theorem is no longer valid in positive characteristic.
There is, however, a more subtle, and useful, description of the radical in this case We
explain thisin the sequd.

We define the natural number | by the following inequalities: p' <n< p'*.Let
M denote the set of matrices LU{l} where I is the identity element of M ,(k).. Let
a € M (k) be amatrix. It will be convenient to work with the following variant of the
characteristic polynomial of a ¢, (X )= det(Xa+1)e k[X]

Consider the expansion of (p_a(X ) asapolynomia inthevariable X:

;a(x):]‘—i_ica,ixi

i=1
The indices of the form i=pl, j=0,..| play a key role in the following
arguments. For j =0,...,I we definethe “trace functions™ T; by T, (a) =C

ap”

Obviously, Ty(a)=Tr(a) isthetrace of the matrix a.



Wealso defineasequence L: Ry o Ry o...o R,1 of subsetsof L as
R; :={aeL|T(ma)=0 for everymeM and0<i< jf (1<j<l+1).
Alternatively, for every 0< j <I, wehave
Rj+l::{ae R; |Tj(ma)=0 for every meM|

At this point we can formulate a characterization of Rad(L) which is the main
result of this section, it isuseful and reads as foll ows:
Theorem 3.2 Let L<M (k) be an algebra of matrices over the finite field k of
characteristic p. Put | =|log,, n|, and let Ry,Ry,+,R 1 be as defined above. Then:

1 Ry,Ry,...,R,1 aeidedlsof L:
2. R,1 = Rad(L):
3.Forevery je{0.....I} thefunction T; is p!-semilinear on Ry, i.e.
Tj(ea+ pb)=a® T;(a)+ 5’ T;(0)
forevery o,f ek and a,be R;.

Property 3 implies that we can obtain abasis of R;,; from abasis R; by solving
a system of linear equations over k. Indeed set ag =1, ant let ay,...,a5 be abasis of L
over k. Suppose that we have abasis {bl,bz,...,br} of R; over k, and we are looking for

r
abasisof Rj,;. Semilinearity impliesthat an element ae Rj,a= > 4ly isin R;,; if and
i=1

onlyif $T(ab P’ =0,({t=0...5s)
i=1

The inverse of the automorphism 2 iP° of the finite fidd k = k, can be

computed efficiently, hence the system above can be translated into
1

r pS
ElTj (abj)” 4 =0 (t=0,..,9

This latter is a system of linear equation in the variables 4;,4,.,...,4,. Thus we
start with Ry =L and thenin turn proceed to compute R, ,...,R 1.

From a basis of R, we obtain a basis of R,; by solving a system of linear
equation of k. The number of equations and the number of variables is at most n?, hence
the system can be solved in time (n+logq)®Y). We obtain a basis of Rad(L) in
I +1=0(logn) such rounds; there fore the overall cost of the computation is (n+logq)°@
bit operations. Below we give aformal description of the algorithm.

Radical (L):=

A:={l}Ubasis of L;
B:=basisof L;



for j from 1 to [I 09, nJ+ 1do
if B#gthen
1
i

C:=|T;(ab)?" |acAbeB

]

A =abasisof KerC:

Bi={Ab +...+ 40 [(A,..., 2 )eA)
fi
od
return B.

The proof of Theorem 3.2 isimmediatedy with the next sequence of lemmas. The
statement of the first lemma can be considered as a special case of the theorem, where the
underlying moduleis simple.

Lemma 3.3 Let S be a simple agebra over the finite fiedd k and U be a simple S -
module. Then there exists an element a< S with T, (a)=1, where Tr, (a) stands for the

ordinary trace of the action of aon U.

Below we show that semi linearity and other useful proprieties hold for the trace
functions T; on certain idedls.
Lemma 3.4 Let L<M (k) be a matrix algebra over the field k of characteristic p.
Assumethat L # Rad(L). Let (0)=Ug <U; <...<U, =U bea composition series of the L
— module U =k". Let 14,15,...,I; bethe minima eements of the set of ideals of L
properly containing Rad(L).For every index i € {12,...,t} fix asimpleL — module V; that
beongstotheided I; and denote the multiplicity of V; inthe composition seriesby my.
Put | =llog,n| and definetheideds Ry, R,...,R,;as

R =Rad(L)+ > I;;
plim

(*)

Then:

i) R, = Rad(L),

ii) For every j € {0,...,I} thefunction T; is p! - semilinear on R} (in the sense
of Theorem 3.2)

iii) T, (ab) =T, (ba)for every je{0...1}, beL and aeR;.

iv) T; isidenticaly zeroon R j+1 (j=0....,]).

V) T; isnotidenticaly zeroonideds J; such that the multiplicity m is divisible

by p) butnot by pl* (j=04...,1).



The last lemma provides atool to inductively verify that the subsets R; coincide
withtheideal R; defined inthat lemma
Lemma 3.5 Keeping the notation of Lemma 3.4 for each j € {0....,|} wehave
R.,={aeR |T,(ab)=0foreverybe {I}UL}
Remark 3.6 The approach presented here is a simplified and specialized version of a

result from [4] where arbitrary fields of characteristic p are alowed. In that genera case
the characterization of theideds R; isdlightly more complicated then formula (*).

4. ABOUT COMPUATIONSIN LIE ALGEBRAS

Just like associative algebras, Lie algebras can be conveniently described by
structure constants. If G isaLie agebraover afidd k and e;,e,,...,e, isabasis of G,
then the bracket is described if we have the products gg as linear combinations of the
basis e ements:

[eu 19'J= Vi@t 17,6
The coefficients y; €k are cdled structure constants.

Now we outline al gorithms for computing the nil potent and the solvableradical of
a Lie algebra These problems can be reduced to associative radical computations. First
we consider the nilradical. We need atheorem of Jacobson [10].

Let G beafinitedimensiond Lie algebra over an arbitrary field k.
Theorem 4.1 (Jacobson’s Theorem) Let L be the associative (matrix - ) algebra generated
by the linear transformaions ad(x),xeL,ie, the image ad(L) of the adjoint

representation of L. Then an dement Xe L is in the nilradica N(L) if and only if
ad(x)e Rad(L).

This result offers a reasonable way to computing N(L) if the ground field k is a
finite field or an agebraic number fied. Indeed, we can compuite first a basis of L, and
then compute Rad(L) with the agorithms of the previous section. We calculate the
intersection of the k — subspaces ad(L) and Rad(L) by solving a system of linear
equations. By Jacobson’s Theorem the inverse image in L of the intersection
ad(L)~ Rad(L) isN(L). A forma description of our method reads as follows.

Nilradical (L): =

L: = associative a gebra generated by ad(L)

return ad “‘Rad(L).

Corollary 4.3 Let G beafinitedimensiond Lie algebraover thefidd k, wherek is ether
a finite field or on agebraic number field. Suppose that G is given as a collection of
structure constants. Then the nilradical N(G) can be computed in time polynomia in the
input size.

Next we address the problem of computing the solvable radical R (G).

For finite k the problem of computing R (G) can be reduced efficiently to the
problem of computing N(G).



We observe first that N (G)<R (G) andif N (G)=(0) then R (G)=(0), because
the next to last element of the derived series of R (G) is an abelian hence nilpotent ideal
of G. With these we define the sequence G; of Lie algebras as follows: let G, =G ; if
N (Gj)=(0) then let G,1=G,/N (G;); if N (G;)=(0) then G,,; is not defined. This
sequence of Lie agebras has no more than dim, G +1 elements. From Corollary 4.3 we
obtain that the algebras G; can al be computed in polynomial time over finitek. Let G;
be the last agebra of the sequence. We then have G; =G/ R(G). Moreover, we can
construct a basisfor R(G) by keeping track of the preimages of theideals we factored out
during the computation of the sequence Gy,Gy....,G;.

It isinstructive to view this computation in terms of ideals of G. Fori > 0 let J;
denote the kernd of the composition of the natural mapsGy — G; — ... > G;. We then
have J; = J, =...c J;,N (GIJ;)=J;,1/ J; for 0O<i<j, and J; = R(G). From abasis of
J; abasis of J;,; is obtained by a single call of the nilradical — agorithm with the
algebra G/ Jjas input. As a result, we obtain dements hy,h,,....,h, eG such that
hy +Ji,...,h, +J; fromabasisof Ji,;/J;. Now the elements h, together with abasis of
J; will congtitute abasis of J;,;. In j such rounds we obtain abasisof R(G). Below we
giveaforma description of the algorithm:

Solvable Radical (G): =

S = (0):
loop
S = Nilradical (G/S);
¢ = natural map G > G/ S;
S::¢‘l(§);
until S = (0);
return S
Corollary 4.4 Let G be a finite dimensiond Lie dgebra over kq, given by structure
constants. Then (a basis of) the solvable radical R(G) can be computed in time
polynomial in dimkq G and logq.
Variants of the radical algorithms discussed here are implemented by Wilhelm de

Graaf in a genera library of Lie dgebras algorithm called ELIAS (for Eindhoven Lle
Algebra System), which is built into the computer a gebra systems GAP4 and MAGMA.
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