
ABOUT COMPUTATIONS IN LIE ALGEBRAS 
 

CAMELIA CIOBANU 
ION COLTESCU 
IOAN POPOVICIU 
PAUL VASILIU 
 
Naval Academy �Mircea cel Batran�, Constanta, Romania  
 
 

Abstract 
In this paper we shall present a reasonable way to compute the nilpotent 
and the solvable radical of a Lie algebra. 

 

1. INTRODUCTION 
We consider some basic algorithmic problems related to finite dimensional 

associative algebras. 
Our starting point is the structure theory of these algebras and we touch 

upon some applications of the associative decomposition algorithms. These 
include efficient algorithms for calculating the radical (solvable and nilpotent) of 
Lie Algebras. 
 
2. BASIC DEFINITIONS AND THEOREMS 

First we give some basic definitions related to associative algebras. 
A linear space L over the field k is an algebra over k if it is equipped with a 

binary, k � bilinear operation (called multiplication). We denote de product of  Lyx ,  

by xy. Multiplication is assured to be associative, i.e.    zxyyzx   for every Lz,y,x  . 

We shall assume throughout that .nLdimk  We say that L is a commutative 
algebra if xy = yx for every  .Ly,x  . 

An k subspace S of L is a subalgebra of L, if S is closed under multiplication: if 
Sy,x   then .Sxy  

An k subspace I of L is a left ideal of L if Lyx  whenever Ix  and .Ly  A 
right ideal is defined analogously. An k � subspace I of L is an ideal of L if I is both left 
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and right ideal of L. If I is an ideal in L, then we can form the factor algebra L/I. The 
notions of homomorphism and L-module are used in the standard way. 

The algebra L is simple if it has  no ideals except (0) and L, and  ,0LL   where 
LL is the algebra generated by products ab with .Lb,a   We say that L is the direct sum 
of its ideals s1 L,,L   (written as s1 L...L  ) if L is the direct sum of these linear 
subspace. 
Theorem 2.1 (Representation Theorem) Let L be an algebra over the field k and suppose 
that .nLdimk   Then L is isomorphic to a subalgebra of  k1nM  - the algebra of all n + 1 
by n + 1 matrices over k. 

An element Lx  is called nilpotent if 0x p   for some positive integer p. An 
element x is strongly nilpotent if xy is nilpotent for every Ly . 

The Jacobson radical  LRad  of L is the set of strongly nilpotent elements of  L. 

It is not difficult to see that  LRad  is an ideal of L and that the fact  LRadL /  has no 
nonzero strongly nilpotent elements. It can be shown also, that  ,LRad  is a nilpotent 

ideal: there exist a positive integer p such that ,0xxx p21   for all 

 .LRadx,,x,x p21   

An algebra L is semisimple if 2L  and    .0LRad   

A characterization of semisimple algebra it was done by next theorem 
Theorem 2.2 (Wedderburn�s Theorem). If L is a finite dimensional semisimple 
associative algebra over the field k, then L is expressible as a direct sum 

,21 sLLLL    

where the iL  are exactly the minimal nonzero ideals of L. Moreover, Li is isomorphic to 
matrix algebra  ikinM  where ki is a possibly noncommutative extension field of k 

 .si1   
In the next section we present algorithms for computing the Jacobson radical. 

Here the interesting case is when k (and consequently L) is finite. We explain some basic 
methods for finding in a computationally efficient way the structural ingredients of 
algebras. These methods are applied in the last section to the computation of the 
(solvable) radical and the nilradical of Lie algebras. 

We recall first some basic facts about Lie algebras. Detailed exposition can be 
found in Jacobson [10] and Humphreys [9]. A linear space G over the field k is a Lie 
algebra, if G is equipped with a k � bilinear binary operation [ , ] such that   0, xx  for 

every Gx  and          0y,x,zx,z,yz,y,x   for every Gzyx ,,  (the Jacobi 
identity). 

Just like in the associative case, we have the familiar notions of subalgebra, ideal, 
factor algebra and homomorphism for Lie algebras. 

The derived series of G is the collection  jG  of ideals in G defined as   GG 0   

and       iii GGG ,1   for i >0. 



A Lie algebra is called solvable if the derived series reaches (0) in finitely many 

steps:    0G n   for some natural number n. 
Here we consider finite dimensional Lie algebra only. In this case G hase an 

unique maximal solvable ideal, denoted by  ,GR the radical of G. 

The descending central series of G is the sequence jG  of ideals of G, where 

GG0   and  i1i G,GG   for .0i   A Lie algebra G is nilpotent if  0nG  for some 
natural number n. If ,Gdimk   then G has an unique maximal nilpotent ideal  ,GN  
the nilradical of G. 
Example: Let L be an associative algebra over k. For two elements Lb,a   we write 
  baabb,a  for the additive commutator. It is easy to check this operation satisfies the 
identities of a Lie-bracket. As a consequence, if a k � subspace S of L is closed with 
respect to the operation [ , ], then S ca be considered as a Lie algebra. Particularly 
important are the Lie subalgebras of this form which are obtained from  .kG pM They 

are called linear Lie algebras. 
There is a straightforward analogue of the regular representation for a Lie algebra 

G. For an   GGxadletGx  :,  be the linear map that maps Gy  to  .y,x  The 

map  xadx   is a Lie algebra homomorphism from G to linear Lie algebra  Ggl  of all 
linear transformations of the k space G. Unfortunately, this map is far from being faithful 
( if G is simple, then this map is faithful). We just remark here that, according to a deep 
theorem of Ado and Iwasuwa [10], every finite dimensional Lie algebra is actually 
isomorphic to a linear Lie algebra. 

We are interested in exact computations, and k will be either a finite field or on 
algebraic number field. 

We specify now the input of the algorithmic problems addressed. To obtain 
sufficiently general results, we consider an algebra to be given as a collection of structure 
constants. 

If L is an algebra over the field k and n21 e,,e,e   is a basis of the k � space L, 

then multiplication is completely described if we express the product jiee  as linear 

combinations of the basis elements: 
nij1ijji eeee n1     

 The coefficients kkij   are called structure constants. When an algebra is given 

as input, we assume that it is represented as an array of structure constants. Substructures 
(sack as subalgebras, ideals, subspaces) can then be represented by bases whose elements 
are linear combinations of basis elements of the ambient structure (algebra). 

In our cases k can be viewed as an algebra over its prime field P. (If k is finite 
then pkP   for some prime p, if k is number field than QP  ). 

In these cases k is usually specified by giving the (monic) minimal polynomial f 
of a single generating element  over the prime field P. This is a special case of the 
representation with structure constants. The coefficient of f give the structure constants 

with respect to P � basis 11 ,,,,1 n  of k where .kdimn p  



 Another important way to represent an algebra is in the form of a matrix algebra. 
In these cases we are given a collection of matrices which generate the algebra. The 
algorithms described in these notes are applicable in this setting as well. From such a 
matrix representation one can efficiently find a basis of the algebra and then calculate 
structure constants with respect to this basis. 

We would like to consider algorithms which have a theoretical guarantee for their 
efficiency. From the perspective of computer science these are the polynomial time 
algorithms. An algorithm runs in polynomial time if, on inputs of length n the 
computation requires at most nc bit operations. Here c > 0 is a constant independent of n, 
and n is a positive integer. 
 
3. COMPUTING THE RADICAL 

 Suppose L is a finite dimensional algebra over the field k, given as a collection of 
structure constants. Our objective is to find a basis of  ,LRad  the radical of L, in time 
polynomial in the input size. 

If char k = 0, then the problem is equivalent to solving a system of linear 
equations over the ground field as follows from the characterization of the radical by 
Dickson: 
Theorem 3.1 Let L be a finite dimensional algebra of matrices over a field k, and      char 
k = 0. Then  

Rad(L)={xL /Tr(yx)=0 for every yL}. 
 

 In fact, if n21 e,,e,e   is a linear basis of L over k, then to find  ,LRad  it suffices 

to solve the linear system   ,,,1,0 nixeTr i   where x is an �unknown� element of L. 

We now turn to the case where L (and hence qkk  ) is finite. We assume that  p 

is a prime, q is a power of p, qkk   and that L is a subalgebra of  .knM   

The statement of Dickson�s Theorem is no longer valid in positive characteristic. 
There is, however, a more subtle, and useful, description of the radical in this case. We 
explain this in the sequel. 

We define the natural number l by the following inequalities: .1 ll pnp Let 

M denote the set of matrices  IL  where I is the identity element of  .knM . Let               
a   knM  be a matrix. It will be convenient to work with the following variant of the 

characteristic polynomial of a:      .det XkIXaXa   

Consider the expansion of  Xa  as a polynomial in the variable X: 

  



n

i

i
iaa XcX

1
,1  

 The indices of the form l,,0j,pi j   play a key role in the following 

arguments. For lj ,,0  we define the �trace functions� Tj  by   .:
, jpaj caT   

Obviously,    aTraT0   is the trace of the matrix a.  



We also define a sequence 1l10 RRR:L    of subsets of L as 

    .1lj1ji0 and  Mmevery  for  0maTLa:R ij   

Alternatively, for every ,lj0   we have 

  Mm every for  0maTRa:R jj1j   

 At this point we can formulate a characterization of  LRad  which is the main 
result of this section, it is useful and reads as follows: 
Theorem 3.2 Let  kL nM  be an algebra of matrices over the finite field k of 
characteristic p. Put  ,nlogl p  and let 1l10 R,,R,R   be as defined above. Then: 

1. 1l10 R,,R,R   are ideals of L: 
2.   :LRadR 1l   

3. For every  l,,0j   the function jT  is jp -semilinear on ,R j  i.e. 

     bTaTbaT j
p

j
p

j
jj

   

for every .Rb,a and  k, j  

Property 3 implies that we can obtain a basis of 1jR   from a basis jR  by solving 

a system of linear equations over k. Indeed set ,Ia0   ant let s1 a,,a   be a basis of L 

over k. Suppose that we have a basis  rbbb ,,, 21   of jR  over k, and we are looking for 

a basis of 1jR  . Semilinearity implies that an element 



r

1i
iij ba,Ra   is in 1jR   if and 

only if    .s,,0t,0baT
jp

iit

r

1i
j 


  

The inverse of the automorphism 
sp   of the finite field qkk   can be 

computed efficiently, hence the system above can be translated into   

   s,,0t0baT iit

r

1i
j

sp

1




  

 This latter is a system of linear equation in the variables .,,, r21    Thus we 
start with LR0   and then in turn proceed to compute .R,,R 1ll    

From a basis of iR  we obtain a basis of 1iR   by solving a system of linear 

equation of k. The number of equations and the number of variables is at most n2, hence 

the system can be solved in time   )1(Oqlogn  . We obtain a basis of  LRad  in 

 nlog01l   such rounds; there fore the overall cost of the computation is    10qlogn   
bit operations. Below we give a formal description of the algorithm. 

Radical   :L  
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      fi 
  od 
  return B. 
The proof of Theorem 3.2 is immediately with the next sequence of lemmas. The 

statement of the first lemma can be considered as a special case of the theorem, where the 
underlying module is simple. 
Lemma 3.3 Let S be a simple algebra over the finite field k and U be a simple S � 
module. Then there exists an element Sa  with   ,1aTrU   where  aTrU  stands for the 
ordinary trace of the action of a on U. 

Below we show that semi linearity and other useful proprieties hold for the trace 
functions jT  on certain ideals. 

Lemma 3.4 Let  kL nM  be a matrix algebra over the field k of characteristic p. 
Assume that  .LRadL   Let   UUUU0 r10    be a composition series of the L 

� module .kU n  Let t21 I,,I,I   be the minimal elements of the set of ideals of L 
properly containing  .LRad For every index  t,,2,1i   fix a simple L � module iV  that 

belongs to the ideal iI  and denote the multiplicity of iV  in the composition series by .mi   

 nloglPut p  and define the ideals 110 ,,,  lRRR  as 

  ;
/

i

mp

j ILRadR
i

j

              

(*) 
Then: 
 i)  ;1 LRadRl   

 ii) For every  l,,0j   the function jT  is jp  - semilinear on jR  (in the sense  

 of Theorem 3.2) 

 iii) jT    baTab j for every  l,,0j  , Lb  and .'
jRa  

 iv) jT  is identically zero on  .l,,0jR lj
'   

 v) jT  is not identically zero on ideals iJ  such that the multiplicity mi is divisible  

 by jp  but not by ljp    .l,,1,0j   
 



 The last lemma provides a tool to inductively verify that the subsets jR  coincide 

with the ideal jR  defined in that lemma. 

Lemma 3.5 Keeping the notation of Lemma 3.4 for each  l,,0j   we have 

    LIbabTRaR jjj  every for  01  

Remark 3.6 The approach presented here is a simplified and specialized version of a 
result from [4] where arbitrary fields of characteristic p are allowed. In that general case 
the characterization of the ideals  jR  is slightly more complicated then formula (*). 

 
4. ABOUT COMPUATIONS IN LIE ALGEBRAS 

 Just like associative algebras, Lie algebras can be conveniently described by 
structure constants. If G is a Lie algebra over a field k and n21 e,,e,e   is a basis of G, 
then the bracket is described if we have the products eiej as linear combinations of the 
basis elements: 

  nijijji eeee
n

  11
,  

The coefficients k
kij   are called structure constants.  

Now we outline algorithms for computing the nilpotent and the solvable radical of 
a Lie algebra. These problems can be reduced to associative radical computations. First 
we consider the nilradical. We need a theorem of Jacobson [10].  

Let G be a finite dimensional Lie algebra over an arbitrary field k. 
Theorem 4.1 (Jacobson�s Theorem) Let L be the associative (matrix - ) algebra generated 
by the linear transformations   .,e.i,Lx,xad   the image  Lad  of the adjoint 

representation of L. Then an element Lx  is in the nilradical N(L) if and only if 
   .LRadxad   

This result offers a reasonable way to computing N(L) if the ground field k is a 
finite field or an algebraic number field. Indeed, we can compute first a basis of L, and 
then compute  LRad  with the algorithms of the previous section. We calculate the 
intersection of the k � subspaces  Lad  and  LRad  by solving a system of linear 

equations. By Jacobson�s Theorem the inverse image in L of the intersection 
   LRadLad   is N(L). A formal description of our method reads as follows. 

Nilradical (L): = 
      L: = associative algebra generated by  Lad  

      return  .LRadad 1  
Corollary 4.3 Let G be a finite dimensional Lie algebra over the field k, where k is either 
a finite field or on algebraic number field. Suppose that G is given as a collection of 
structure constants. Then the nilradical N(G) can be computed in time polynomial in the 
input size. 

Next we address the problem of computing the solvable radical R (G). 
For finite k the problem of computing R (G) can be reduced efficiently to the 

problem of computing N(G). 



We observe first that     GG RN    and if    0GN  then    ,0GR because 

the next to last element of the derived series of  GR  is an abelian hence nilpotent ideal 

of G. With these we define the sequence iG  of Lie algebras as follows: let GG 0 ; if 

   0iGN  then let  iGN/GG i1i  ; if    0iGN  then 1iG   is not defined. This 

sequence of Lie algebras has no more than 1dim Gk  elements. From Corollary 4.3 we 

obtain that the algebras iG  can all be computed in polynomial time over finite k. Let jG  

be the last algebra of the sequence. We then have  .GR/GG j   Moreover, we can 

construct a basis for  GR  by keeping track of the preimages of the ideals we factored out 

during the computation of the sequence .G,,G,G j10   

It is instructive to view this computation in terms of ideals of G. For i > 0 let iJ  
denote the kernel of the composition of the natural maps .GGG i10    We then 

have   i1ij21 J/J,JJJ  iG/JN  for ,ji0   and  .GRJ j   From a basis of 

iJ  a basis of 1iJ   is obtained by a single call of the nilradical � algorithm with the 

algebra iJ/G as input. As a result, we obtain elements Gh,,h,h k21   such that 

ii1 Jh,,Jh k    from a basis of .J/J i1i  Now the elements lh  together with a basis of 

iJ   will constitute a basis of .J 1i  In  j such rounds we obtain a basis of  .GR  Below we 

give a formal description of the algorithm: 
Solvable Radical(G): = 
          S: = (0): 
       loop 
           S: = Nilradical (G/S); 
           : = natural map ;S/GG    

           ;S:S 1   

       until  ;0S   
       return S. 

Corollary 4.4 Let G be a finite dimensional Lie algebra over ,qk  given by structure 

constants. Then (a basis of) the solvable radical  GR  can be computed in time 

polynomial in Gdim qk   and .qlog  

Variants of the radical algorithms discussed here are implemented by Wilhelm de 
Graaf in a general library of Lie algebras algorithm called ELIAS (for Eindhoven LIe 
Algebra System), which is built into the computer algebra systems GAP4 and MAGMA. 
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