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Abstract

The aim of this paper is to present a short survey of several new
results concerning optimization of discrete inclusions. We study an
optimization problem given by a discrete inclusion with end point con-
straints and we present several approaches concerning first and second-
order necessary optimality conditions for this problem.
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Consider the problem

(1) minimize g(xN )

over the solutions of the discrete inclusion

(2) xi ∈ Fi(xi−1), i = 1, 2, ..., N, x0 ∈ X0,

with end point constraints of the form

(3) xN ∈ XN ,

where Fi : Rn → P(Rn), i = 1, 2, ..., N , X0, XN ⊂ Rn and g : Rn → R are
given.

The aim of this paper is to announce several new results concerning first
and second-order necessary optimality conditions for problem (1)-(3).
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At the beginning we obtain necessary optimality conditions for a solu-
tion x = (x0, x1, ..., xN ) to the problem (1)-(3) in terms of a variational
inclusion associated to the problem (2) and in terms of the cone of interior
directions (Dubovitskij-Miljutin tangent cone) to the set XN at xN . Af-
terwards this result is improved by replacing the cone of interior directions
with the concept of derived cone introduced by Hestenes ([5]) and using
a remarkable ”intersection property” of derived cones obtained by Mirica
([7]). Finally, we present an approach concerning second-order necessary
optimality conditions for the problem (1)-(3).

Optimal control problems for systems described by discrete inclusions
have been studied by many authors ([1], [6], [8], [9], [10], [12] etc.). In
the framework of multivalued problems, necessary optimality conditions for
problem (1)-(2) (i.e. without end point constraints) are obtained in [11]. The
idea in [11] is to use a special (Warga’s) open mapping theorem to obtain a
sufficient condition for (2) to be locally controllable around a given trajec-
tory and as a consequence, via a separation result, to obtain the maximum
principle.

In contrast with the approach in [11], even if the problem studied in the
present paper is more difficult, due to end point constraints, the method in
our approach seems to be conceptually very simple, relying only 2-3 clear-cut
steps and using a minimum of auxiliary results.

Denote by SF the solution set of inclusion (2), i.e.

SF := {x = (x0, x1, ..., xN ); x is a solution of (2)}.

and by RN
F := {xN ; x ∈ SF } the reachable set of inclusion (2).

We consider x = (x0, x1, ..., xN ) ∈ SF a solution of (2).
Since the reachable set RN

F is, generally, neither a differentiable manifold,
nor a convex set, its infinitesimal properties may be characterized only by
tangent cones in a generalized sense, extending the classical concepts of
tangent cones in Differential Geometry and Convex Analysis, respectively.

From the multitude of the intrinsic tangent cones in the literature, the
contingent, the quasitangent and Clarke’s tangent cones, defined, respec-
tively, by

KxX = {v ∈ Rn; ∃ sm → 0+, xm ∈ X : xm−x
sm

→ v}
QxX = {v ∈ Rn; ∃ c(.) : [0, s0) → X, c(0) = x, c′(0) = v}
CxX = {v ∈ Rn; ∀ (xm, sm) → (x, 0+), xm ∈ X, ∃ ym ∈ X : ym−xm

sm
→ v}



seem to be among the most oftenly used in the study of different problems
involving nonsmooth sets and mappings.

The second-order quasitangent set to X at x relative to v ∈ QxX is
defined by

Q2
(x,v)X = {w ∈ Rn; ∀sm → 0+, ∃wm → w : x + smv + s2

mwm ∈ X}.

We recall that, in contrast with KxX, QxX, the cone CxX is convex and
one has CxX ⊂ QxX ⊂ KxX.

Another important tangent cone is the cone of interior directions
(Dubovitskij-Miljutin tangent cone) defined by

IxX := {v ∈ Rn; ∃ s0, r > 0 : x + sB(v, r) ⊂ X ∀ s ∈ [0, s0)},

B(v, r) := {w ∈ Rn; ||w − v|| < r}, B(v, r) := clB(v, r).

From the properties of the cone of interior directions we recall only the
following:

(4) QxX1 ∩ IxX2 ⊂ Qx(X1 ∩X2).

Definition 1. ([5]) A subset M ⊂ Rn is said to be a derived set to
X ⊂ Rn at x ∈ X if for any finite subset {v1, ..., vk} ⊂ M , there exist s0 > 0
and a continuous mapping a(.) : [0, s0]k → X such that a(0) = x and a(.)
is (conically) differentiable at s = 0 with the derivative col[v1, ..., vk] in the
sense that

lim
Rk

+3θ→0

||a(θ)− a(0)−
∑k

i=1 θivi||
||θ||

= 0.

We shall write in this case that the derivative of a(.) at s = 0 is given by

Da(0)θ =
k∑

i=1

θjvj , ∀θ = (θ1, . . . , θk) ∈ Rk
+ := [0,∞)k.

A subset C ⊂ Rn is said to be a derived cone of X at x if it is a derived
set and also a convex cone.

For the basic properties of derived sets and cones we refer to Hestenes
([5]); we recall that if M is a derived set then M ∪{0} as well as the convex
cone generated by M , defined by

cco(M) = {
k∑

i=1

λjvj ; λj ≥ 0, k ∈ N, vj ∈ M, j = 1, ..., k}



is also a derived set, hence a derived cone.
The fact that the derived cone is a proper generalization of the classical

concepts in Differential Geometry and Convex Analysis is illustrated by the
following results ([5]): if X ⊂ Rn is a differentiable manifold and TxX is the
tangent space in the sense of Differential Geometry to X at x

TxX = {v ∈ Rn; ∃ c : (−s, s) → X, of class C1, c(0) = x, c′(0) = v}

then TxX is a derived cone; also, if X ⊂ Rn is a convex subset then the
tangent cone in the sense of Convex Analysis defined by

TCxX = cl{t(y − x); t ≥ 0, y ∈ X}

is also a derived cone. By cl A we denote the closure of the set A ⊂ Rn.
Since any convex subcone of a derived cone is also a derived cone, such an

object may not be uniquely associated to a point x ∈ X; moreover, simple
examples show that even a maximal with respect to set-inclusion derived
cone may not be uniquely defined: if the set X ⊂ R2 is defined by

X = C1

⋃
C2, C1 = {(x, x);x ≥ 0}, C2 = {(x,−x), x ≤ 0}

then C1 and C2 are both maximal derived cones of X at the point (0, 0) ∈ X.

We recall that two cones C1, C2 ⊂ Rn are said to be separable if there
exists q ∈ Rn\{0} such that:

< q, v >≤ 0 ≤< q,w > ∀v ∈ C1, w ∈ C2.

We denote by C+ the positive dual cone of C ⊂ Rn

C+ = {q ∈ Rn; < q, v >≥ 0, ∀ v ∈ C}

The negative dual cone of C ⊂ Rn is C− = −C+.
The following ”intersection property” of derived cones, obtained by Mirică

([7]), is a key tool in the proof of necessary optimality conditions.

Lemma 2. ([7]) Let X1, X2 ⊂ Rn be given sets, x ∈ X1 ∩ X2, and
let C1, C2 be derived cones to X1, resp. to X2 at x. If C1 and C2 are not
separable, then:

cl(C1 ∩ C2) = (cl(C1)) ∩ (cl(C2)) ⊂ Qx(X1 ∩X2).



For a mapping g(.) : X ⊂ Rn → R which is not differentiable, the clas-
sical (Fréchet) derivative is replaced by some generalized directional deriv-
atives. We recall only the upper right-contingent derivatives, defined by

DKg(x; v) = lim sup
(θ,w)→(0+,v)

g(x + θw)− g(x)
θ

, v ∈ KxX

and in the case when g(.) is locally-Lipschitz at x ∈ int(X) by Clarke’s
generalized directional derivative, defined by:

DCg(x; v) = lim sup
(y,θ)→(x,0+)

g(y + θv)− g(y)
θ

, v ∈ Rn.

The first and second order uniform lower Dini derivative are defined as
follows

DKg(x; v) = lim inf
(v′,θ)→(v,0+)

g(x + θv′)− g(x)
θ

,

D2
Kg(x, v;w) = lim inf

(w′,θ)→(w,0+)

g(x + θv + θ2w′)− g(x)− θDKg(x; v)
θ2

.

When g(.) is of class C2 one has

DKg(x, v) = g′(x)T v, D2
Kg(x, v;w) = g′(x)T z +

1
2
vT g′′(x)v.

The results in the next section will be expresed, in the case where g(.) is
locally-Lipschitz at x, in terms of the Clarke generalized gradient, defined
by:

∂Cg(x) = {q ∈ Rn; < q, v >≤ DCg(x; v) ∀ v ∈ Rn}.

By P(Rn) we denote the family of all subsets of Rn.
Corresponding to each type of tangent cone, say τxX one may introduce a

set-valued directional derivative of a multifunction G(.) : X ⊂ Rn → P(Rn)
(in particular of a single-valued mapping) at a point (x, y) ∈ Graph(G) as
follows

τyG(x; v) = {w ∈ Rn; (v, w) ∈ τ(x,y)Graph(G)}, v ∈ τxX.

Similarly one may define second-order directional deivatives of the set-
valued map G(.). For example the second-order quasitangent derivative of
G at (x, u) relative to (y, v) ∈ Q(x,u)(graph(G(.)) is the set-valued map
Q2

(u,v)G(x, y, .) defined by

graphQ2
(u,v)G(x, y; .) = Q2

((x,u),(y,v))(graphG(.)).



We recall that a set-valued map, A(.) : Rn → P(Rn) is said to be a
convex (respectively, closed convex) process if Graph(A(.)) ⊂ Rn ×Rn is a
convex (respectively, closed convex) cone.

In what follows, we shall assume the following hypothesis.

Hypothesis 1. i) X0, XN ⊂ Rn are closed sets.
ii) There exists L > 0 such that Fi(.) is Lipschitz with the Lipschitz

constant L, ∀i ∈ {1, ..., N}.
iii) There exists Ai(.) : Rn → P(Rn), i = 1, 2, ..., N a family of closed

convex processes such that

Ai(v) ⊂ QxiFi(xi−1; v) ∀v ∈ Rn,∀i ∈ {1, ..., N}.

Let A0 ⊂ Qx0X0 be a closed convex cone. To the problem (2) we asso-
ciate the linearized problem

(5) wi ∈ Ai(wi−1), i = 1, 2, ..., N, w0 ∈ A0.

Denote by SA the solution set of inclusion (5) and by RN
A the reachable

set of inclusion (5).
We recall that if A : Rn → P(Rn) is a set-valued map then the adjoint

of A is the multifunction A∗ : Rn → P(Rn) defined by

A∗(p) = {q ∈ Rn; < q, v >≤< p, v′ > ∀(v, v′) ∈ graphA(.)}.

Using the property in (4), the fact that RN
A ⊂ QxN

RN
F and the duality

results in [11] we obtain a Maximum Principle for problem (1)-(3).

Theorem 1. Let x = (x0, x1, ..., xN ) ∈ SF be an optimal solution for
problem (1)-(3) such that Hypothesis 1 is satisfied and let g(.) : Rn → R be
a locally Lipschitz function.

Then for any closed convex cone A0 ⊂ Qx0X0 and any convex cone
C1 ⊂ IxN

XN there exist λ ∈ {0, 1} and p = (p0, p1, ..., pN ) ∈ R(N+1)n such
that

(6) p0 ∈ A∗
1(p1), p1 ∈ A∗

2(p2), ..., pN−1 ∈ A∗
N (pN ), pN = wN ,

(7) pN ∈ λ∂Cg(xN )− C+
1 , p(0) ∈ A+

0

(8)
< −p0, x0 >= max{< −p0, v >; v ∈ X0},
< −pi, xi >= max{< −pi, v >; v ∈ Fi(xi−1)}, i = 1, ..., N,



(9) λ + ||p|| > 0.

For the details of the proof see [2].

In Theorem 1 an important hypothesis is that the terminal set XN is
assumed to have a nonempty cone of interior directions. Such type of as-
sumptions may be overcome using the concept of derived cone.

Using the fact that if A0 is a derived cone to X0 at x0 then the reachable
set RN

A is a derived cone to RN
F at xN , Lemma 1 and the the duality results in

[11] we have the next version of the Maximum Principle for problem (1)-(3).

Theorem 2. Let XN ⊂ Rn be a closed set, let X0 ⊂ Rn, Fi, i = 1, ..., N
satisfy Hypothesis 1 and are convex valued, let x = (x0, x1, ..., xN ) ∈ SF be
an optimal solution for problem (1)-(3) such that Hypothesis 1 is satisfied
and let g(.) : Rn → R be a locally Lipschitz function.

Then for any derived cones A0 of X0 at x0 and C1 of XN at xN there
exist λ ∈ {0, 1} and p = (p0, p1, ..., pN ) ∈ R(N+1)n such that (6)-(9) hold
true.

The proof can be found in [3].

In particular, when Fi are expressed in the parametrized form

Fi(xi−1) =
⋃

ui∈Ui

fi(xi−1, ui) ∀xi−1 ∈ Rn, i = 1, ..., N

and X0 = {x0}, i.e. inclusion (2) becames the nonlinear discrete system

(10) xi = fi(xi−1, ui), ui ∈ Ui, i = 1, ..., N, x0 = x0

taking Ai(v) = ∂fi
∂x (xi−1, ui)v, i = 1, ..., N we obtain the following conse-

quence of Theorem 2.

Corollary 1. Let XN ⊂ Rn, Ui ⊂ Rn be compact set, let fi(., .) :
Rn × Ui → Rn be such that fi(., ui) is differentiable and the multifunction
Fi satisfy Hypothesis 1, i = 1, ..., N , let x = (x0, x1, ..., xN ) ∈ R(N+1)n

be an optimal solution for problem (1),(10),(3) and u = (u0, u1, ..., uN ) be
a control corresponding to solution x. Consider g(.) : Rn → R a locally
Lipschitz function.



Then for any derived cone C1 of XN at xN there exist λ ∈ {0, 1} and
p = (p0, p1, ..., pN ) ∈ R(N+1)n such that

p0 ∈ (
∂f1

∂x
(x0, u1))∗(p1), ..., pN−1 ∈ (

∂fN

∂x
(xN−1, uN ))∗(pN ),

pN ∈ λ∂Cg(xN )− C+
1 ,

< −pi, xi >= max{< −pi, fi(xi−1, ui) >, ui ∈ Ui}, i = 1, ..., N,

λ + ||p|| > 0.

Denote by RN
Q the reachable set of the discrete inclusion.

(11) wi ∈ QxiFi(xi−1, wi−1), i = 1, N, w0 ∈ Qx0X0.

Let y = (y0, y1, ..., yN ) satisfy (11) and let R2
Q denote the reachable set

of the discrete inclusion

vi ∈ Q2
(xi,yi)

Fi(xi−1, yi−1; vi−1), i = 1, N, w0 ∈ Q2
(x0,y0)X0.

In the next result we obtain second-order necessary optimality conditions
for problem (1)-(3).

Theorem 3. Assume that Hypothesis 1 is satisfied, let g(.) : Rn → R
be a locally Lipschitz function, let C0 ⊂ Qx0X0 be a closed convex cone, let
x = (x0, x1, ..., xN ) ∈ SF be an optimal solution for problem (1)-(3) and
assume that the following constraint qualification is satisfied

{−wN ;∃p = (p0, p1, ..., pN ) ∈ R(N+1)n such that p0 ∈ C+
0 , p0 ∈ (Cx1F1(x0,

.))∗p1, ..., pN−1 ∈ (CxN
FN (xN−1, .))∗pN , pN = wN} ∩ (CxN

XN )+ = {0}.

Then we have the first-order necessary condition

DKg(xN ; yN ) ≥ 0 ∀yN ∈ RN
Q ∩QxN

XN .

Furthermore, if equality holds for some yN , then we have the second-
order necessary condition

D2
Kg(xN , yN ;wN ) ≥ 0 ∀wN ∈ R2

Q ∩Q2
(xN ,yN )XN .

The proof, that can be find in [4], is based on a general (abstract) op-
timality condition formulated by Zheng ([13]) and use also several first and
second-order approximations of the reachable set RN

F at xN ([4]).
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